首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设幂级数anxn在(一∞,+∞)内收敛,其和函数s(x)满足 s"一2xs’一4s=0,s(0)=0,s’(0)=1。 (Ⅰ)证明:an+2=an,n=1,2,…; (Ⅱ)求s(x)的表达式。
设幂级数anxn在(一∞,+∞)内收敛,其和函数s(x)满足 s"一2xs’一4s=0,s(0)=0,s’(0)=1。 (Ⅰ)证明:an+2=an,n=1,2,…; (Ⅱ)求s(x)的表达式。
admin
2018-05-25
48
问题
设幂级数
a
n
x
n
在(一∞,+∞)内收敛,其和函数s(x)满足
s"一2xs’一4s=0,s(0)=0,s’(0)=1。
(Ⅰ)证明:a
n+2
=
a
n
,n=1,2,…;
(Ⅱ)求s(x)的表达式。
选项
答案
(Ⅰ)对幂级数的和函数s(x)=[*]∑a
n
x
n
求一、二阶导数,得 s’=[*]n(n一1)a
n
x
n—2
, 分别将其代入已知方程,整理得 [*](n+1)(n+2)a
n
x
n
一[*]4a
n
x
n
=0, 即(2a
2
—4a
0
)x
0
+[*][(n+1)(n+2)a
n+2
一2na
n
一4a
n
]x
n
=0。 由于上式对任意的x均成立,则有2a
2
—4a
0
=0及(n+1)(n+2)a
n+2
一2(n+2)a
n
=0, 于是得 a
n+2
=[*]a
n
,n=1,2,…。 (Ⅱ)根据(Ⅰ)的结论a
n+2
=[*]a
n
,n=0,1,2,…,且根据题中条件有 a
0
=s(0)=0.a
1
=s’(0)=1。 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/FGg4777K
0
考研数学一
相关试题推荐
设Ω={(x,y,z)|x2+y2≤3z,1≤z≤4},求三重积分
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.(1)求a的值;(2)将β1,β2,β3由α1,α2,α3线性表示
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别为α,β的转置.证明:r(A)≤2.
设1≤a<b,函数f(χ)=χln2χ,求证f(χ)满足不等式(Ⅰ)0<f〞(χ)<2(χ>1).(Ⅱ)f(a)+f(b)-2f(b-a)2.
(Ⅰ)已知由参数方程确定了可导函数y=f(χ),求证:χ=0是y=f(χ)的极大值点.(Ⅱ)设F(χ,y)在(χ0,y0)某邻域有连续的二阶偏导数,且F(χ0,y0)=F′χ(χ0,y0)=0,F′y(χ0,y0)>0,F〞χχ(χ0,y0)<0
已知f(x)二阶可导,且f(x)>0,f(x)f’’(x)-[f’(x)]2≥0(x∈R).若f(0)=1,证明:f(x)≥ef’(0)x(x∈R).
设n阶(n≥3)矩阵A的主对角元均为1,其余元素均为a,且方程组AX=0只有一个非零解组成基础解系,则a=_________
求下列曲面的方程:以曲线为母线,绕z轴旋转一周而生成的曲面;
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并且满足xf’(x)=f(x)+(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
一链条悬挂在一钉子上,启动时一端离开钉子8m,另一端离开钉子12m,试分别在以下两种情况下求链条滑离钉子所需要的时间:不计钉子对链条的摩擦力;
随机试题
Anewkindofmachine【C1】________totaketheplaceofhumans.These【C2】________candojobsthataretoodangerousforhumans.【C3
党的十七大报告指出,社会建设的重点是
闭襻性肠梗阻的特点是
()又称为审慎原则、保守主义。
招投标中,应作为废标处理的情况有()。
在会计电算化工作方式下,错账的更正方法不包括()。
人们在感怀乡愁的同时,把梦想留在他乡,把匆匆背影留给故乡。这说明()。
2015年9月3日在北京天安门广场隆重举行纪念大会(包括检阅部队),以纪念中国人民抗日战争暨世界反法西斯战争胜利()
先天的遗传因素和后天的环境影响对人的发展起到作用到底哪个重要?双胞胎的研究对于回答这一问题有重要的作用。唯环境影响决定论者预言,如果把一对双胞胎儿完全分开抚养,同时把一对不相关的婴儿放在一起抚养,那么,待他们长大成人后,在性格等内在特征上,前二者之间决不会
设A是n阶实对称矩阵.证明:(1)存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx.(2)若A正定,则对任意正整数k,Ak也是对称正定矩阵.(3)必可找到一个数a,使A+aE为对称正定矩阵.
最新回复
(
0
)