首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n维向量α1,α2,…,αs线性无关,如果n维向量β不能由α1,α2,…,αs线性表出,而γ可由α1,α2,…,αs线性表出,证明α1,α1+α2,α2+α3,…,αs-1+αs,β+γ线性无关.
已知n维向量α1,α2,…,αs线性无关,如果n维向量β不能由α1,α2,…,αs线性表出,而γ可由α1,α2,…,αs线性表出,证明α1,α1+α2,α2+α3,…,αs-1+αs,β+γ线性无关.
admin
2016-11-03
40
问题
已知n维向量α
1
,α
2
,…,α
s
线性无关,如果n维向量β不能由α
1
,α
2
,…,α
s
线性表出,而γ可由α
1
,α
2
,…,α
s
线性表出,证明α
1
,α
1
+α
2
,α
2
+α
3
,…,α
s-1
+α
s
,β+γ线性无关.
选项
答案
利用拆项重组法及线性无关的定义证之. 由题设γ可由α
1
,α
2
,…,α
s
线性表出,可设 γ=c
1
α
1
+c
2
α
2
+…+c
s
α
s
, 又令 k
1
α
1
+k
2
(α
1
+α
2
)+…+k
s
(α
s
+α
s-1
)+k(β+γ)=0. 将其拆项重组得到 (k
1
+k
2
+kc
1
)α
1
+(k
2
+k
3
+kc
2
)α
2
+…+(k
s
+kc
s
)α
s
+kβ=0. 因α
1
,α
2
,…,α
s
线性无关,而β不能由α
1
,α
2
,…,α
s
线性表出,故α
1
,α
2
,…,α
s
,β线性无关.因而 k=0, k
1
+k
2
+kc
1
=0, k
2
+k
3
+kc
2
=0, …,k
s
+kc
s
=0, 即 k
1
+k
2
=0,k
2
+k
3
=0,…,k
s-1
+k
s
=0,k
s
=0, 解得 k
1
=k
2
=…=k
s-1
=k
s
=0, 即α
1
,α
1
+α
2
,α
2
+α
3
,…,α
s-1
+α
s
,β+γ线性无关.
解析
利用线性无关的定义证之,也可用矩阵表示法证之.
转载请注明原文地址:https://kaotiyun.com/show/FHu4777K
0
考研数学一
相关试题推荐
设λ1,λ2是矩阵A的两个特征值,对应的特征向量分别为α1,α1,则().
从5个数:1,2,3,4,5中任取3个数,再按从小到大排列,设X表示中间那个数,求X的概率分布.
在半径为r的球内嵌入一圆柱,试将圆柱的体积表示为其高的函数,并确定此函数的定义域。
证明下列极限都为0;
商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂产品每箱装100个,废品率为0.06,乙厂产品每箱120个,废品率为0.05.若将所有产品开箱混装,任取一个其为废品的概率
将函数f(x)=x/(2+x-x2)展开成x的幂级数.
方程xy2+y-l=0能否确定y是x的隐函数?若能,试写出它的显函数形式.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设a1,a2,…,at为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+a1,β+a2,…,β+at线性无关.
设f(x)为[0,1]上的单调增加的连续函数,证明
随机试题
()属于脑卒中患者的运动处方。
在刑事诉讼执行程序中,下列哪些情况可以暂予监外执行?()。
根据商业银行法的规定,下列有关商业银行的表述中哪一项是不正确的?
下列说法正确的是:
对图3-88中所示的平面杆件体系内力分析结果,哪项完全正确?[2004年第43题]
关于维果斯基的“文化-历史”发展理论,下列说法错误的是()。
民办学校的教师、受教育者与公办学校的教师、受教育者具有()。
已知正数x,y,z,满足x+y+z=xyz,且不等式恒成立,则λ的取值范围为()
郭明义同志是新时期学习实践雷锋精神的优秀代表,他先后荣获了道德模范、希望工程突。出贡献奖、全国无偿献血奉献奖金奖、全国红十字志愿者之星、中央企业优秀共产党员等荣誉称号。郭明义的人生价值主要表现在()
Thatis______.
最新回复
(
0
)