首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f′(ξ)(b—a); (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则f′+(0)存在,且f
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f′(ξ)(b—a); (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则f′+(0)存在,且f
admin
2018-12-29
47
问题
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f′(ξ)(b—a);
(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
=A,则f′
+
(0)存在,且f′
+
(0)=A。
选项
答案
(Ⅰ)作辅助函数φ(x)=f(x)—f(a)—[*](x—a),易验证φ(x)满足φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 [*] 根据罗尔定理,可得至少有一点ξ∈(a,b),使φ′(ξ)=0,即 [*] 所以f(b)—f(a)=f′(ξ)(b—a)。 (Ⅱ)任取x
0
∈(0,δ),则函数f(x)在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此由拉格朗日中值定理可知,存在ξ
x
0
∈(0,x
0
)[*](0,δ),使得 [*] 又由于[*]=A,对(1)式两边取x
0
→0
0
时的极限 [*] 故f′
+
(0)存在,且f′
+
(0)=A。
解析
转载请注明原文地址:https://kaotiyun.com/show/FJM4777K
0
考研数学一
相关试题推荐
设X1,X2,…,Xn为来自总体X~N(μ,σ2)的一个样本,统计量,则()
设随机变量X1,X2的分布函数、概率密度分别为F1(x),F2(x);f1(x),f2(x).如果a>0,b>0,c>0,则下列结论中不正确的是()
设函数f(x)在(0,+∞)内可导,且f(x)=1+,则f(x)=_______,
设f(x)、g(x)均为连续的可微函数,且x=yf(xy)dx+xg(xy)dy.若存在二元可微函数u(x,y),使得du=z,求f(xy)一g(xy).
计算三重积分绕z轴旋转一周所形成的曲面与两平面z=2,z=8所围成的空间闭区域.
设函数f(x)在区间[a,b]上连续,n>1为自然数,证明:
证明级数收敛,且其和数小于1.
设随机变量X的绝对值不大于1,在事件{-1<X<1)出现的条件下,X在(-1,1)内任一子区间上取值的条件概率与该子区间的长度成正比.试求:X取负值的概率p.
假设D={(x,y)|0≤x≤2,0≤y≤1),随机变量X和Y的联合分布是区域D上的均匀分布.考虑随机变量求X和Y的相关系数ρ;
设(X,Y)的联合概率密度为f(x,y)=,求:(X,Y)的边缘密度函数;
随机试题
《雷雨》是一出()
如下_______成立,必使p∧q∧r为假。()
一种与生活愿望相结合并指向于未来的想象是( )。
下列穴位中,可治疗瘾疹、湿疹、丹毒等血热性皮外科病的穴位是
关于两组呈正态分布的数值变量资料,但均数相差悬殊,若比较离散趋势,最好选用下列哪项指标
按现行制度,现金日记账和银行存款日记账必须采用订本式账簿。()
培养德、智、体全面发展的社会主义事业的建设者和接班人的根本途径是()。
在教学中最常用的方法是
中断是CPU与外部设备数据交换的重要方式。CPU响应中断时必须具备3个条件,分别为外部提出中断请求,本中断未屏蔽,(4)。CPU响应中断后,必须由(5)提供地址信息,引导程序进入中断服务子程序;中断服务程序的入口地址存放在(6)中。
在VisualFoxPro中,"表"通常是指
最新回复
(
0
)