首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f′(ξ)(b—a); (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则f′+(0)存在,且f
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f′(ξ)(b—a); (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则f′+(0)存在,且f
admin
2018-12-29
32
问题
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f′(ξ)(b—a);
(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
=A,则f′
+
(0)存在,且f′
+
(0)=A。
选项
答案
(Ⅰ)作辅助函数φ(x)=f(x)—f(a)—[*](x—a),易验证φ(x)满足φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 [*] 根据罗尔定理,可得至少有一点ξ∈(a,b),使φ′(ξ)=0,即 [*] 所以f(b)—f(a)=f′(ξ)(b—a)。 (Ⅱ)任取x
0
∈(0,δ),则函数f(x)在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此由拉格朗日中值定理可知,存在ξ
x
0
∈(0,x
0
)[*](0,δ),使得 [*] 又由于[*]=A,对(1)式两边取x
0
→0
0
时的极限 [*] 故f′
+
(0)存在,且f′
+
(0)=A。
解析
转载请注明原文地址:https://kaotiyun.com/show/FJM4777K
0
考研数学一
相关试题推荐
某地区的人口增长速度与当前该地区的人口成正比.若两年后,人口增加一倍;三年后,人口是20000人,试估计该地区最初的人口数.
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,的解.
设总体X服从指数分布,其密度函数为其中λ>0是未知参数,X1,X2,…,Xn为取自总体X的样本.求λ的最大似然估计量;
假设随机变量X和Y的联合概率密度为求X和Y的分布函数F1(x)和F2(y).
设随机变量X的分布函数为试求y=X2的分布函数.
设随机变量x的概率密度为求Y的分布函数;
设随机变量X1和X2各只有-1,0,1等三个可能值,且满足条件试在下列条件下分别求X1和X2的联合分布.P{X1X2=0}=1;
已知n阶矩阵A=[aij]n×n有n个特征值分别为λ1,λ2,…,λn,证明:
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.证明:Aα1,Aα2,Aα3线性无关.
已知矩阵若矩阵X和Y满足X2+XY=E,A(X+Y)B=E.则矩阵Y=______.
随机试题
(2019年滕州)衡量学生道德品质的重要标志是看他道德评价能力的发展水平。()
略呈研棒状,长l~2cm,花冠圆球形,花瓣4,覆瓦状抱合,萼筒圆柱形,略扁,红棕色,气芳香浓烈的药材是()。
麻醉药品连续使用后易产生瘾癖以及()。
根据微生物所需碳源和能源的不同,可将它们分为哪4种营养类型?
统计评价中,计划标准是指计划部门或业务部门提出的()
某生产企业,职工共180人,企业的资产总额为3000万元,上年亏损52万元,2019年企业有关生产、经营资料如下:(1)取得产品销售收入230万元、国债利息收入23万元,金融债券利息收入39万元。(2)发生产品销售成本100万元;发生产品销售税金及附加
招聘申请表的特点是()。
以下关于城镇职工基本医疗保险状况的描述正确的是()。
奶酪
TheInternetisaninternationalcollectionofcomputernetworksthatallunderstandastandardsystemofaddressesandcommands
最新回复
(
0
)