首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f′(ξ)(b—a); (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则f′+(0)存在,且f
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f′(ξ)(b—a); (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则f′+(0)存在,且f
admin
2018-12-29
41
问题
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f′(ξ)(b—a);
(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
=A,则f′
+
(0)存在,且f′
+
(0)=A。
选项
答案
(Ⅰ)作辅助函数φ(x)=f(x)—f(a)—[*](x—a),易验证φ(x)满足φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 [*] 根据罗尔定理,可得至少有一点ξ∈(a,b),使φ′(ξ)=0,即 [*] 所以f(b)—f(a)=f′(ξ)(b—a)。 (Ⅱ)任取x
0
∈(0,δ),则函数f(x)在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此由拉格朗日中值定理可知,存在ξ
x
0
∈(0,x
0
)[*](0,δ),使得 [*] 又由于[*]=A,对(1)式两边取x
0
→0
0
时的极限 [*] 故f′
+
(0)存在,且f′
+
(0)=A。
解析
转载请注明原文地址:https://kaotiyun.com/show/FJM4777K
0
考研数学一
相关试题推荐
设函数f(x)在(0,+∞)内可导,且f(x)=1+,则f(x)=_______,
设随机变量X和Y相互独立,其概率分布为则下列式子正确的是()
曲线的渐近线方程为_________.
计算三重积分绕z轴旋转一周所形成的曲面与两平面z=2,z=8所围成的空间闭区域.
设函数f(x)在(一∞,+∞)内具有一阶连续的导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d).记当ab=cd时,求曲线积分I的值.
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,的解.
设函数f(x)在x=x0处可导,则函数|f(x)|在点x=x0处不可导的充分必要条件是().
设空间区域Ω由曲面z=a2一x2一y2与平面z=0所围成,其中a为正常数.记Ω表面的外侧为∑,Ω的体积为V,证明:x2yz2dydz—xy2z2dzdx+z(1+xyz)dxdy=V.
已知A是3×4矩阵,r(A)=1,若α1=(1,2,0,2)T,α2=(1,-1,a,5)T,α3=(2,a,-3,-5)T,α4=(-1,-1,1,a)T线性相关,且可以表示齐次方程Ax=0的任一解,求Ax=0的基础解系.
设(X,Y)的联合概率密度为f(x,y)=.求:(1)(X,Y)的边缘密度函数;(2)Z=2X—Y的密度函数.
随机试题
Whenhethoughtofthepast,mygrandfatherwouldsometimesshowusphotographsofhimselfatschool.Theywerebrownandfaded,
A.有头疽B.附骨疽C.锁喉痈D.瘰疬E.以上都不是
特殊人群高血压的治疗A、α-受体阻断剂(α-RB)B、β-受体阻断剂(β-RB)C、噻嗪类利尿药D、醛固酮受体拮抗剂E、血管紧张素转换酶抑制剂(ACEI)脑血管病病人宜选用的药物是
下列各项中,有关汇票与支票相互区别的表述中正确的有()。
健康保险所承保的疾病风险的特点有()
王某按照某银行支行的业务印章自行制作了一个业务印章,并印制了空白存单,然后制作了一张50万元的银行存单,并以此从另一家银行获得抵押贷款50万元。根据《刑法》的有关规定,有关王某的行为,下列说法正确的有()。
立国之初,明朝统治者就将发展教育事业放在重要地位,于是确立了“______”的文教政策。
堆是一种数据结构,(36)是堆。
Weneedonehundredmoresignaturesbeforewetakethe______tothegovernor.
TheriseandfallofvacationsTheriseTopvacationtime:AugustPaidvacationisa【D1】______.Theappearanceoftheword"vaca
最新回复
(
0
)