首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是r(B)=n.
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是r(B)=n.
admin
2018-11-11
60
问题
设A为m阶实对称矩阵且正定,B为m×n实矩阵,B
T
为B的转置矩阵,试证:B
T
AB为正定矩阵的充分必要条件是r(B)=n.
选项
答案
必要性:设B
T
AB为正定矩阵,则由定义知,对任意的n维实列向量x≠0,有x
T
(B
T
AB)x>0,即(Bx)
T
A(Bx)>0.于是,Bx≠0.因此,Bx=0只有零解,故有r(B)=n.充分性:因(B
T
AB)
T
=B
T
A
T
(B
T
)
T
=B
T
AB,故B
T
AB为实对称矩阵.若r(B)=n,则线性方程组Bx=0只有零解,从而对任意的n维实列向量x≠0,有Bx≠0.又A为正定矩阵,所以对于Bx≠0,有(Bx)
T
A(Bx)>0.于是当x≠0,有x
T
(B
T
AB)x=(Bx)
T
A(Bx)>0,故B
T
AB为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/FJj4777K
0
考研数学二
相关试题推荐
设3阶方阵A,B满足关系式A一1BA=6A+BA,且求矩阵B.
设f(x)具有二阶连续导数,且f(0)=1,f(2)=3,f’(2)=5,求∫01xf”(2x)dx.
设函数f(x)在[0,2]上连续,在(0,2)内可导,且f(0)=1,f(1)=0,f(2)=3,证明至少存在一点ξ,使得f’(ξ)=0.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一1,且α1=(1,a+1,2)T,α1=(a一1,一a,1)T。分别是λ1,λ2对应的特征向量.又A的伴随矩阵A*有一个特征值为A*,属于λ0的特征向量为α0=(2,一5a,2a+1)T.试求a、λ0
设矩阵已知线性方程组Ax=β有解但不唯一,试求:正交矩阵Q,使QTAQ为对角矩阵.
设(X,Y)在区域D={(x,y)|1≤x≤3,1≤y≤3}上服从均匀分布,事件A={X≤a},B={Y>a}.(1)若P(A∪B)=,求a;(2)设D0为事件A∪B所占的区域,随机地向D投点4次,Z为落入D0内的次数,求E(Z2).
(1)证明当|x|充分小时,不等式0≤tan2x一x2≤x4成立;(2)设
(2005年)设函数f(χ)连续,且f(0)≠0,求极限
(2003年)设an=,则极限nan等于【】
已知质点在时刻t的加速度a=t2+1,且当t=0时,速度v=1,距离s=0,求此质点的运动方程.
随机试题
撤销党内职务处分,是指撤销受处分党员由党内选举或者组织任命的党内各种职务。()
在氯碱生产三效四体二段蒸发工序中,一效二次蒸汽送往二效加热室,二效二次蒸汽送往三效加热室,三效二次蒸汽送往四效加热室。()
HaveyoueverwatchedahomeshoppingprogramonTV?Canyoudescribe【C1】______it’sliketoshopathomebytelevision?Haveyo
根据降血糖作用机制,阿卡波糖属于
小儿肺的呼吸功能,下列哪项不正确
下列各项中,会引起应收账款账面价值发生增减变动的有()。
【2015年安徽.判断】教材是教学活动可以利用的唯一资源。()
下列名言与作者的对应关系不正确的一项是()。
Alotofpeoplebelievethattelevisionhasaharmfuleffectonchildren.Afewyearsago,thesamecriticismsweremadeofthe
Politicalinstitutionsdevelopwhenthecomplexityofthesocietyreachesthepointatwhichkinshiporganizationcannolonger
最新回复
(
0
)