首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. 判断矩阵A可否对角化.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. 判断矩阵A可否对角化.
admin
2018-05-25
80
问题
设A是三阶矩阵,α
1
,α
2
,α
3
为三个三维线性无关的列向量,且满足Aα
1
=α
2
+α
3
,Aα
2
=α
1
+α
3
,Aα
3
=α
1
+α
2
.
判断矩阵A可否对角化.
选项
答案
因为α
1
-α
2
,α
2
-α
3
为属于二重特征值-1的两个线性无关的特征向量,所以A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/FKX4777K
0
考研数学三
相关试题推荐
设函数f(x)在0<x≤1时f(x)=xsinx,其他的x满足关系式f(x)+k=2f(x+1),试求常数k使极限存在.
设函数f(x)在[a,b]上连续,x1,x2,…,xn,…是[a,b]上一个点列,求.
当x→π时,若有-1~A(x-π)k,则A=_________,k=_________.
试判断级数的敛散性.
求齐次线性方程组基础解系.
已知B是n阶矩阵,满足B2=E(此时矩阵B称为对合矩阵).求B的特征值的取值范围.
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
设且f(0)=0,求函数f(x)和f(lnx).
设且A~B.求a;
随机试题
A.空肠单个小的外伤穿孔B.一段回肠受伤,略红肿,肠系膜搏动尚好C.结肠严重损伤破裂,腹腔大量积脓D.一段空肠多处损伤,该段肠系膜无搏动肠切除,断端吻合
A.CMB.VLDLC.LDLD.HDL将肝外组织细胞的胆固醇转运至肝脏的脂蛋白是
患者龟头部起红斑,局部有群集水疱,并且可见糜烂渗液,伴痒痛,一年反复二三次,刻下症有心烦急躁口干苦,大便干,小便黄。该患者:
呕吐吞酸,嗳气频繁,胸胁满痛,脉弦。此属哪型呕吐
对于采用单价合同的招标工程,如投标书中有明显的数字计算错误,业主有权先做修改再评标。当总价和单价的计算结果不一致时,正确做法是()。
关系模型的主要特征是用________结构表达实体集,用________表示实体间联系。
风险应对策略一般应包括()。
按照MMPI的中国常模标准,可视为有病理性异常表现的T分数划分界值()。
对文学创作提出“应、和、悲、雅、艳”诸项要求的文学理论作品是()。
在日本,行为人实施强盗之际又强奸了受害人,依日本刑法不是分别构成强盗罪和强奸罪,而是构成强盗强奸罪。根据刑法理论,日本刑法规定的强盗强奸罪属于()
最新回复
(
0
)