首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(χ)和g(χ)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(χ)<0’试证明存在ξ∈(a,b)使=0.
设函数f(χ)和g(χ)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(χ)<0’试证明存在ξ∈(a,b)使=0.
admin
2018-05-17
61
问题
设函数f(χ)和g(χ)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(χ)<0’试证明存在ξ∈(a,b)使
=0.
选项
答案
令φ(χ)=f(χ)∫
χ
b
g(t)dt+g(χ)∫
a
χ
f(t)dt,φ(χ)在区间[a,b]上连续,在区间(a,b)内可导,且 φ′(χ)=[f′(χ)∫
χ
b
g(t)dt-f(χ)g(χ)]+[g(χ)f(χ)+g′(χ)∫
a
χ
f(t)dt] =f′(χ)∫
χ
b
g(t)dt+g′(χ)∫
a
χ
(t)dt, 因为φ(a)=φ(b)=0,所以由罗尔定理,存在ξ∈(a,b)使φ′(ξ)=0,即 f′(ξ)∫
ξ
b
g(t)dt+g′(ξ)∫
a
ξ
f(t)dt=0, 由于g(b)=0及g′(χ)<0,所以区间(a,b)内必有g(χ)>0, 从而就有∫
χ
b
g(t)dt>0,于是有[*]=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/FMk4777K
0
考研数学二
相关试题推荐
求极限
已知f(x)=,设F(x)=∫1xf(t)dt(0≤x≤2),则F(x)为().
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
(2007年试题,二)二阶常系数非齐次线性微分方程y’’一4y’+3y=2e2x的通解为y=__________.
(2010年试题,9)三阶常系数线性齐次微分方程y’’’一2y’’+y’一2y=0通解为y=__________.
(2010年试题,2)设y1,y1是一阶非齐次微分方程y’+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则().
(2012年试题,三)计算二重积分,其中区域D为曲线r=1+cosθ(0≤θ≤π)与极轴围成
微分方程y"-4y=e2x的通解为________.
设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解.若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是对应的齐次方程的解,则
将极坐标变换后的二重积分f(rcosθ,rsinθ)rdrdθ的如下累次积分交换积分顺序:其中F(r,θ)=f(reosθ,rsinθ)r.
随机试题
我国慢性肾衰竭最常见的病因为
A.温中健脾B.导滞和胃C.疏肝理气,和胃止痛D.疏肝泄热,和胃止痛E.温中散寒,和胃止痛某患者,症见上腹部胀痛,痛连胁肋,生气时胃痛加重。治疗原则为
钢筋混凝土梁在正常使用荷载下,下列叙述是正确的是()。
某水利工程中饱和无黏性土的相对密度为78%,位于地震设防烈度8度地区,水平地震动峰值加速度为0.30g,则液化临界相对密度(Dr)cr和液化判别情况应为下列()项。
有偿使用建设用地分为()等方式获得。
《关于开展治理商业贿赂专项工作的意见》是于()年下发的。
娟娟一闻到百合花的香味,马上说出花的名称。这种心理现象是()。
某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则赔偿车主1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:一年获利润不少于40000元的概率β;
在函数中,可以用auto、extem、register和static这四个关键字中的一个来说明变量的存储类型,如果不说明存储类型,则默认的存储类型是()。
TheEconomistIntelligenceUnit(EIU)earnestlyattemptstomeasurewhichcountrywillprovidethebestopportunitiesforahealth
最新回复
(
0
)