首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0。证明:向量组α,Aα,…,Ak-1α是线性无关的。
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0。证明:向量组α,Aα,…,Ak-1α是线性无关的。
admin
2017-01-14
48
问题
设A是n阶矩阵,若存在正整数k,使线性方程组A
k
x=0有解向量α,且A
k-1
α≠0。证明:向量组α,Aα,…,A
k-1
α是线性无关的。
选项
答案
设有常数λ
0
,λ
1
,…,λ
k-1
,使得 λ
0
α+λ
1
Aα+…+λ
k-1
A
k-1
α=0, 则有 A
k-1
(λ
0
α+λ
1
Aα+…+λ
k-1
A
k-1
α)=0, 从而得到λ
0
A
k-1
α=0。由题设A
k-1
α≠0,所以λ
0
=0。 类似地可以证明λ
1
=λ
2
=…=λ
k-1
=0,因此向量组α,Aα,…,A
k-1
α是线性无关的。
解析
转载请注明原文地址:https://kaotiyun.com/show/FPu4777K
0
考研数学一
相关试题推荐
[*]
证明:f(x)=x3+px2+qx+r(p,q,r为常数)至少有一个零值点.
求下列已知曲线围成的平面图形绕指定的轴旋转而形成的旋转体的体积:(1)xy=a2,y=0,x=a,x=2a(a>0)绕x轴和y轴;(2)x2+(y-2)2=1,绕x轴;(3)y=lnx,y=0,x=e,绕x轴和y轴;(4)x2+y2=4,
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式丨B-1-E丨=__________.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x≤22;
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:|x-a|
设随机变量X~N(0,1),Y~N(1,4),且相关系数pXY=1,则P{Y=2X+1}=________.
设X1和X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)与f2(x),分布函数分别为F1(x)与F2(x),则
设周期函数f(x,y)在(-∞,+∞)内可导,周期为4,又则曲线y=f(x)在点(5f(5))处的切线的斜率为().
设函数f(u)可导,y=f(x2)当自变量x在x=﹣1处取得增量△x=﹣0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
随机试题
痛泻药方的方药组成是
《素问·水热穴论》所说:“其本在肾。其末在肺”是指肺与肾的
主水饮,肾虚水泛,气血受困的面色特点是()
某厂向某校去函表示:“本厂发展X型耳机,每副单价30元,若需订购,请给我厂来函”。该校回信说:“本校愿意订购你厂生产的耳机300副,每副单价30元,但务请在耳机上附加一个音量调节器。”该校的复函属于()。
1997年5月2日,卢某因协助外国人进入我国国境,被主管机关处以5日拘留。按照《行政处罚法》的规定,这项处罚应当由哪种规范性文件设定?
重力式码头胸墙混凝土,在施工缝处浇筑时应清除已硬化混凝土表面的()。
一般情况下,应以()的员工能够达到的工作水平作为绩效指标的考评标准。
在幼儿的交往关系类型中,被拒绝型幼儿主要表现出的特点是()
Ridingabikeisgoodexerciseandgreatfun.Butwhatdoyoudowithabikeafteryououtgrowit?NicoleBasil,12,hasaterri
Web服务(webservice)的主要目标是跨平台的操作性,它有许多适用场合。但某些情况下,Web服务也会降低应用程序的性能。下列情况中,______不适合采用Web服务作为主要的系统集成技术。
最新回复
(
0
)