首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0。证明:向量组α,Aα,…,Ak-1α是线性无关的。
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0。证明:向量组α,Aα,…,Ak-1α是线性无关的。
admin
2017-01-14
47
问题
设A是n阶矩阵,若存在正整数k,使线性方程组A
k
x=0有解向量α,且A
k-1
α≠0。证明:向量组α,Aα,…,A
k-1
α是线性无关的。
选项
答案
设有常数λ
0
,λ
1
,…,λ
k-1
,使得 λ
0
α+λ
1
Aα+…+λ
k-1
A
k-1
α=0, 则有 A
k-1
(λ
0
α+λ
1
Aα+…+λ
k-1
A
k-1
α)=0, 从而得到λ
0
A
k-1
α=0。由题设A
k-1
α≠0,所以λ
0
=0。 类似地可以证明λ
1
=λ
2
=…=λ
k-1
=0,因此向量组α,Aα,…,A
k-1
α是线性无关的。
解析
转载请注明原文地址:https://kaotiyun.com/show/FPu4777K
0
考研数学一
相关试题推荐
3个电子元件并联成一个系统,只有当3个元件损坏2个或2个以上时,系统便报废.已知电子元件的寿命服从参数为1/1000的指数分布,求系统的寿命超过1000h的概率.
下列各对函数中,两函数相同的是[].
设y=y(x)是函数方程ln(x2+y2)=x+y-1在(O,1)处所确定的隐函数,求dy及dy|(0,1).
设生产与销售某产品的总收益R是产量x的二次函数,经统计得知:当产量x=0,2,4时,总收益R=0,6,8,是确定总收益R与产量x的函数关系。
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
设曲线L位于xOy平面的第一象限内,L上任意一点M处的切线与y轴总相交,交点为A,已知|MA|=|OA|,且L经过点(3/2,3/2),求L的方程.
在上半平面求一条向上凹的曲线,其上任一点P(x,y)处在曲率等于此曲线在该点的法线段PQ长度的倒数(Q是法线与x轴的交点),且曲线在(1,1)处在切线与x轴平行.
设数列{an}满足条件:a0=3,a1=1,an-2-n(n-1)an=0(n≥2),S(x)是幂级数的和函数。求S(x)的表达式。
幂级数的收敛区间为________.
随机试题
A.甲睾酮B.丙酸睾酮C.美睾酮D.氟甲睾酮E.复方睾酮酯大剂量长期应用可致肝肿瘤的药物:
资本主义的发展经历了________和________两个阶段。
带脉的功能是()冲脉的功能是()
下列关于基金公司前台部门的说法错误的是()。
下列不能反映国民经济活动总量的指标是()。
会计期末,会计部门与财产物资保管和使用部门对相关财产物资的明细分类账期末余额进行核对的行为属于()。
有法律责任一定会有法律制裁。
五个女人M、N、O、P、Q经常聚在一起编织,她们编织的东西有:毛衣、袜子、披肩、围巾、围裙,喜欢吃的甜点有:果酱饼干、消化饼、生姜饼干、黄油饼干和朱古力饼干;喜欢喝的有:咖啡、茶、水、橙汁和汤。并已知以下信息:(1)P喜欢黄油饼干,但不喜欢喝汤。(2)
数据库保护分为安全性控制、______、并发性控制和数据的恢复。
A、Hedoesn’tlikemessypeople.B、Hedoesn’tknowwheretheirhouseis.C、Heseesnoneedtocleanthehouse.D、Hecanthinkof
最新回复
(
0
)