首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
向量组α1,α2,…,αs(s≥2)线性无关的充分条件是( ).
向量组α1,α2,…,αs(s≥2)线性无关的充分条件是( ).
admin
2021-07-27
44
问题
向量组α
1
,α
2
,…,α
s
(s≥2)线性无关的充分条件是( ).
选项
A、存在一组数k
1
=k
2
=…=k
s
=0,使得k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0成立
B、α
1
,α
2
,…,α
s
中不含零向量
C、当k
1
,k
2
,…,k
s
不全为零时,总有k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0
D、向量组α
1
,α
2
,…,α
s
中向量两两线性无关
答案
C
解析
判断向量组的线性无关性有多个角度,其中能作为其充要条件的主要有:
①向量组线性无关的定义,要使k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0成立,当且仅当组合系数k
1
+k
2
+…+k
s
均为零;
②从秩的角度,r(α
1
,α
2
,…,α
s
)=s;
③从向量组内向量之间的线性组合关系角度,向量组内任何一个向量均不能被其余向量线性表示;
④从向量组α
1
,α
2
,…,α
s
对应的齐次线性方程组解的角度,线性方程组k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0仅有零解.对照比较,选项(A)中的表述无实际意义,与定义没有任何关联度,选项(B),(D)仅为必要条件,均不合题意,选项(C)与①表述一致,故选(C).
转载请注明原文地址:https://kaotiyun.com/show/FQy4777K
0
考研数学二
相关试题推荐
设函数f(x),g(x)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f’(a)=g’(a),f’’(x)>g’’(x)(x>a).证明:当x>a时,f(x)>g(x).
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
设三阶矩阵A的特征值为λ1=-1,λ2=0,λ3=1,则下列结论不正确的是().
已知向量组α1,α2,α3,α4线性无关,则向量组()
设为正项级数,则下列结论正确的是()
设有任意两个n维向量组α1,α2,…,αm和β1,β2,…,βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则
设问a,b,c为何值时,矩阵方程AX=B有解?有解时求出全部解.
已知二次型f(x1,x2,x3)=xT(ATA)x的秩为2,求正交变换x=Qy,将f化为标准形.
求函数f(χ)=(2-t)e-tdt的最大值与最小值.
设齐次线性方程组有非零解,且为正定矩阵,求a,并求出当|X|=时,XTAX的最大值。
随机试题
下列不属于文献调查法的特点的是【】
右旋糖酐的适应证错误的是
男,36岁,心悸气短10余年,劳累后加重,今同他人争吵后突然四肢抽搐,意识丧失,5分钟后症状缓解,但家人发现右侧肢体活动障碍,失语。幼年患风湿性关节炎。查体:血压21/14kPa,神清,完全性运动性失语,右侧向舌瘫,右侧肢体偏瘫,上肢肌力Ⅰ级,下肢肌力Ⅲ级
以下合同变更的说法,错误的是()。
设备的()是表示设备修理复杂程度的计量单位。
初始保证金率若为50%,券商需要融资( )元。在上题相同的前提下,足额保证金交易的回报率只有( ),保证金交易的引入提高了证券交易的风险。
下列关于OSI参考模型分层的选项中,分层相邻且顺序从低到高的有()。
下列关于牵连犯的说法中,正确的是()。
下述有关历史创造者的观点中,属于唯物史观的有
Lookattheformbelow.Youwillhearawomanaskingforcancellationofanappointment.TelephoneMessageforMr.WhiteMes
最新回复
(
0
)