首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
过坐标原点作曲线y=ex的切线,该切线与曲线y=ex及x轴围成的向x轴负向无限伸展的平面图形记为D. (Ⅰ)求D的面积A; (Ⅱ)求D绕直线x=1旋转所成的旋转体的体积V.
过坐标原点作曲线y=ex的切线,该切线与曲线y=ex及x轴围成的向x轴负向无限伸展的平面图形记为D. (Ⅰ)求D的面积A; (Ⅱ)求D绕直线x=1旋转所成的旋转体的体积V.
admin
2019-07-10
65
问题
过坐标原点作曲线y=e
x
的切线,该切线与曲线y=e
x
及x轴围成的向x轴负向无限伸展的平面图形记为D.
(Ⅰ)求D的面积A;
(Ⅱ)求D绕直线x=1旋转所成的旋转体的体积V.
选项
答案
设切点坐标为P(x
0
,y
0
),于是曲线y=e
x
在点P的切线斜率为 y’=[*], 切线方程为 y—y
0
=[*](x—x
0
). 它经过点(0,0),所以一y
0
=一x
0
[*],代入求得x
0
=1,从而y
0
=[*]=e,切线方程为y=ex. (Ⅰ)取水平条面积元素, [*] (积分∫
0
e
ln ydy为反常积分,[*]yln y=0来自洛必达法则) (Ⅱ)D绕直线x=1旋转一周所成的旋转体的体积微元为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/FXJ4777K
0
考研数学三
相关试题推荐
设直线y=kx与曲线所围平面图形为D1,它们与直线x=1同成平面图形为D2.求k,使得D1与D2分别绕x轴旋转一周成旋转体体积V1与V2之和最小,并求最小值;
设一抛物线y=ax2+bx+c过点(0,0)与(1,2),且a<0,确定a,b,c,使得抛物线与x轴所围图形的面积最小.
设L:由x=0,L及y=sint围成面积S1(t);由y=sint,L及x=围成面积S2(t),其中(1)t取何值时,S(t)=S1(t)+S2(t)取最小值?(2)t取何值时,S(t)=S1(t)+S2(t)取最大值?
求曲线y=x2一2x与直线y=0,x=1,x=3所围成区域的面积S,并求该区域绕y轴旋转一周所得旋转体的体积V.
在曲线y=(x一1)2上的点(2,1)处作曲线的法线,由该法线、x轴及该曲线所围成的区域为D(y>0),则区域D绕x轴旋转一周所成的几何体的体积为().
设A为三阶矩阵,且|A|=4,则
设X,Y为随机变量,若E(XY)=E(X)E(Y),则().
确定常数a,c的值,使得其中c,为非零常数.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设随机变量X1,X2,…,Xn相互独立且在[0,a]上服从均匀分布,令U=max{X1,X2,…,Xn),求U的数学期望与方差.
随机试题
“永州八记”写于柳宗元被贬为________时,其首篇是《________》。
以下观点何项是《诸病源候论》提出的
男性,30岁。患出血坏死性胰腺炎2周,经治疗,高热不退,持续腹痛。体检:上腹扪及一块物。血淀粉酶1000U/L(Somogyi法),血白细胞14×109/L,中性粒细胞0.85(85%)。最可能的原因是
病理切片中见到绒毛结构的疾病不是流产后不规则流血,子宫内容物组织学检查为成团的滋养细胞,未见绒毛结构,诊断为
目前,各银行还根据个人需求提供个性化的还款方式及还款服务,较为常见的特色还款方式包括()。
日用小杂品的配送在现实生活中,往往都是采用()方法来向用户供货和发送货物的。
Sociologists(社会学家)tellusthatweareheadingforasocietyleisure.Thetrendisunmistakable.Onehundredyearsago,theypo
A、 B、 C、 D、 C确认图片中有孩子们和一位女士在公交车旁排成一队,同时公交车里面的男士正在看着他们。
A、Newspaperoflowprice.B、Newspaperwithattractiveheadline.C、Newspaperwithsportspage.D、Newspaperwithbusinesssection.
A、Theinterpersonalrelationship.B、Thehighpressure.C、Theservantsystem.D、Therapidprogress.B原文提到美国人对时间又爱又十艮,后面具体解释原因,答案依
最新回复
(
0
)