首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵,若AB=E,证明B的列向量组线性无关.
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵,若AB=E,证明B的列向量组线性无关.
admin
2021-02-25
36
问题
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵,若AB=E,证明B的列向量组线性无关.
选项
答案
证法1:用定义证明.将矩阵B按列分块,得B=(β
1
,β
2
,…,β
n
),若有一组数k
1
,k
2
,…,k
n
,使得 k
1
β
1
+k
2
β
2
+…+k
n
β
n
=0, 则 [*] 由于AB=E,在等式两端左乘矩阵A得 [*] 即k
1
=0,k
2
=0,…,k
n
=0,从而向量组β
1
,β
2
,…,β
n
线性无关. 证法2:由于B是m×n矩阵,所以r(B)≤n,另一方面, r(B)≥r(AB)=r(E)=n, 所以r(B)=n,故B的列向量组β
1
,β
2
,…,β
n
线性无关.
解析
本题考查向量组线性无关的概念和抽象的向量组线性相关性的证明方法.可以用向量组线性相关性的定义证明,也可以用矩阵的秩进行证明.
转载请注明原文地址:https://kaotiyun.com/show/Fi84777K
0
考研数学二
相关试题推荐
设f(χ)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f′(ξ)=-f(ξ)cotξ.
设f(χ)在[a,b]上连续且单调增加,证明:∫abχf(χ)dχ≥∫abf(χ)dχ.
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记un=f(n),n=1,2,…,又u1<u2,证明
设自动生产线加工的某种零件的内径X(单位:mm)服从正态分布N(μ,1),内径小于10mm或大于12mm为不合格品,其余为合格品.销售合格品获利,销售不合格品亏损,已知一个零件的销售利润T元与X有如下关系:T=,问平均内径μ取何值时,销售一个零件的平均获利
已知A是n阶对称矩阵,B是n阶反对称矩阵,证明A—B2是对称矩阵。
设A是n阶矩阵,证明:A=O的充要条件是AAT=O.
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
设A=,B=U-1A*U.求B+2E的特征值和特征向量.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
随机试题
甲公司从事建筑工程作业,其在外地设有一处分公司,并且已取得营业执照;2020年7月1日,因新项目建设需要,分公司决定新招一批建筑工人。随后分公司在当地招聘了包括小王和小李在内的10名工人,8月1日开始工作。乙公司与应聘个人口头约定了工作内容和工资数额。
虚劳的病变在五脏,其中最主要的是
[案情]秦岭公司,因业务扩张急需资金周转,于是向中国建设银行申请贷款,双方签订的贷款合同约定,由建设银行向张某贷款200万元,张某以其一处在建房屋作抵押。抵押合同约定,若秦岭公司不能按期还款,则该在建的房屋归建行所有,以充抵借款,并且办理了抵押手续。与此
房地产开发项目的施工许可证由()向发证机关申请领取。
下列哪一项内容不符合在保护装置内设置的指示信号的要求?()
挖土机是常用的土方施工机械,正铲挖土机的挖土特点是().
关于一般性货币政策工具的说法,正确的是()。
在用电梯的必须()进行一次定期安全检验。
简述学生信息素养体现在哪四个方面。
皮亚杰用来说明儿童认知发展的重要概念是()
最新回复
(
0
)