首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立. ①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关. ②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立. ①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关. ②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α
admin
2019-08-12
32
问题
设α
1
,α
2
,α
3
,α
4
都是n维向量.判断下列命题是否成立.
①如果α
1
,α
2
,α
3
线性无关,α
4
不能用α
1
,α
2
,α
3
线性表示,则α
1
,α
2
,α
3
,α
4
线性无关.
②如果α
1
,α
2
线性无关,α
3
,α
4
都不能用α
1
,α
2
线性表示,则α
1
,α
2
,α
3
,α
4
线性无关.
③如果存在n阶矩阵A,使得Aα
1
,Aα
2
,Aα
3
,Aα
4
线性无关,则α
1
,α
2
,α
3
,α
4
线性无关.
④如果α
1
=Aβ
1
,α
2
=Aβ
2
,α
3
=Aβ
3
,α
4
=Aβ
4
,其中A可逆,β
1
,β
2
,β
3
,β
4
线性无关,则α
1
,α
2
,α
3
,α
4
线性无关.
其中成立的为
选项
A、①③④.
B、①②③.
C、②③④.
D、①②④.
答案
A
解析
①,③,④.
①直接从定理3.2得到.
②明显不对,例如α
3
不能用α
1
,α
2
线性表示,而α
3
=α
4
时,α
3
,α
4
都不能用α
1
,α
2
线性表示但是α
1
,α
2
,α
3
,α
4
线性相关.
③容易用秩说明:Aα
1
,Aα
2
,Aα
3
,Aα
4
的秩即矩阵(Aα
1
,Aα
2
,Aα
3
,Aα
4
)的秩,而(Aα
1
,Aα
2
,Aα
3
,Aα
4
)=A(α
1
,α
2
,α
3
,α
4
),由矩阵秩的性质④,
r(Aα
1
,Aα
2
,Aα
3
,Aα
4
)≤r(α
1
,α
2
,α
3
,α
4
).Aα
1
,Aα
2
,Aα
3
,Aα
4
无关,秩为4,于是α
1
,α
2
,α
3
,α
4
的秩也一定为4,线性无关.
④也可从秩看出:A可逆时,r(α
1
,α
2
,α
3
,α
4
)=r(Aα
1
,Aα
2
,Aα
3
,Aα
4
)=4.
转载请注明原文地址:https://kaotiyun.com/show/FpN4777K
0
考研数学二
相关试题推荐
设数列{xn}满足0<x1<1,ln(1+xn)=exn+1一1(n=1,2,…).证明当0<x<1时,ln(1+x)<x<ex一1;
证明:若单调函数f(x)在区间(a,b)内有间断点,则必为第一类间断点.
设当x→0时,f(x)=ln(1+x2)一ln(1+sin2x)是x的n阶无穷小,则正整数n等于()
积分()
已知f(x,y)=x2+4xy+y2,在正交变换下求正交矩阵P.
设则(P-1)100A(Q99)-1=()
求功:(Ⅰ)设半径为1的球正好有一半沉入水中,球的比重为1,现将球从水中取出,问要做多少功?(Ⅱ)半径为R的半球形水池,其中充满了水,要把池内的水全部取尽需做多少功?
设函数f(u)在(0,+∞)内具有二阶导数,且满足等式[img][/img]若f(1)=0,f’(1)=1,求函数f(u)的表达式。
(I)设圆盘的半径为R,厚为h.点密度为该点到与圆盘垂直的圆盘中心轴的距离的平方,求该圆盘的质量m;(Ⅱ)将以曲线y=,x=1,x=4及x轴围成的曲边梯形绕x轴旋转一周生成的旋转体记为V,设V的点密度为该点到旋转轴的距离的平方,求该物体的质量M.
随机试题
确保两岸关系和平发展的关键是()
Wecaneasilyfindtheexpressionof______inalmosteveryDreiser’sfiction.
不是消化道出血显像的诊断依据是
患者,女,26岁。近1个月来,以夜间咳嗽为主,痰中带血丝,伴低热,盗汗。应首先考虑的是()
道路边缘铺设的路边石有立式和卧式两种,混凝土预制的立式路边石一般高出道路多少?[2005年第064题]
现代市场经济的基本特征有()。
下列各项因素中,不会对投资项目内含报酬率指标计算结果产生影响的是()。
2012年1—11月,我国电子信息产品进出口总额10685亿美元,同比增长4.1%,增速比1—10月提高0.8个百分点。其中,出口6273亿美元,同比增长4.5%,增速比1—10月提高0.6个百分点,占全国外贸出口的33.9%;进口4412亿美元,同比增长
在伦敦海格特公墓的马克思墓碑上,镌刻着马克思的一句名言:“哲学家们只是用不同的方式解释世界,而问题在于改变世界。”这句话鲜明地表明了马克思主义的基本特征是
最少知识原则(也称为迪米特法则)是面向对象设计原则之一,指一个软件实体应当尽可能少地与其他实体发生相互作用。这样,当一个实体被修改时,就会尽可能少地影响其他的实体。下列叙述中,“______”不符合最少知识原则。
最新回复
(
0
)