首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(09年)(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a). (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在
(09年)(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a). (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在
admin
2017-04-20
42
问题
(09年)(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a).
(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
,则f
+
’(0)存在,且f
+
’(0)=A.
选项
答案
(I)取F(x)=f(x)一[*] 由题意知F(x)在[a,b]上连续,在(a,b)内可导,且 [*] 根据罗尔定理,存在ξ∈(a,b),使得F’(ξ)=f’(ξ)一[*]=0,即 f(b)一f(a)=f’(ξ)(b一a). (Ⅱ)对于任意的t∈(0,δ),函数f(x)在[0,t]上连续,在(0,t)内可导,由右导数定义及拉格朗日中值定理 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Fuu4777K
0
考研数学一
相关试题推荐
判断下列反常积分的敛散性
用凑微分法求下列不定积分:
证明f(x)=x-[x]在(-∞,+∞)上是有界周期函数.
设曲线L:f(x,y)=l(f(x,y)具有一阶连续偏导数),过第Ⅱ象限内的点M和第N象限内的点N,F为己上从点M到点N的一段弧,则下列积分小于零的是
设z=z(x,y)是由x2-6xy+10y2-2yz-z2+18=0确定的函数,z=z(x,y)的极值点_____________和极值___________.
在一通信渠道中,能传送字符AAAA,BBBB,CCCC三者之一,由于通信噪声干扰,正确接收到被传送字母的概率为0.6,而接收到其他两个字母的概率均为0.2,假设前后字母是否被歪曲互不影响.若收到字符为ABCA,问被传送字符为AAAA的概率是多大?
设有一半径为R的球体,P0是球面一定点,球体上任意一点的密度与该点到P0的距离平方成正比(比例常数k>0),求球体的重心的位置.
设齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均足Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③符Ax=0与Bx=0同解,则秩(A)
已知α1=(﹣1,1,a,4)T,α2=(﹣2,1,5,a)T,α3=(a,2,10,1)T是四阶方阵A的属于三个不同特征值的特征向量,则口的取值为().
当x>0时,曲线().
随机试题
法律适用对象是一般的人而不是特定的人,法律可以反复适用而不是仅适用一次。这表明法律具有()。
行政管理中运用法律方法,首先必须要加强【】
在下列白细胞中免疫细胞主要指
能代表肽链合成起始信号的遗传密码为
A.窦房结B.心房肌C.房室交界D.浦肯野纤维E.心室肌
男,45岁。上腹部疼痛9小时。向背部放射,伴恶心、呕吐。发病前大量饮酒,查体:T38.3℃,P100次/分,上腹部肌紧张,压痛、反跳痛阳性。最可能的诊断是()
2×21年12月10日,甲公司因合同违约而涉及一桩诉讼案件。根据甲公司的法律顾问判断,最终的判决很可能对甲公司不利。2×21年12月31日,甲公司尚未接到法院的判决,因诉讼需承担的赔偿金额无法准确地确定。不过,据专业人士估计,赔偿金额很可能在200万元至2
影响肌肉力量的生理学因素主要有肌源性和神经源性两类。下列选项中,不属于肌源性因素的是()。
Makesureyourheadsetison.TheWritingsectionmeasuresyourabilitytousewritingtocommunicateinanacademicenviron
A、Technologywasnotasprevalentintheclassroomtenyearsagoasitisnow.B、Technologymustbeintegratedintoteachingand
最新回复
(
0
)