求函数f(x)=x2ln(1+x)在x=0处的n阶导数。

admin2019-01-26  35

问题 求函数f(x)=x2ln(1+x)在x=0处的n阶导数。

选项

答案当n=1时, [*] 则f’(0)=0; 当n=2时, [*] 则f"(0)=0; 当n≥2时,利用莱布尼茨公式[*]求解,令u(x)=x2,v(x)=ln(1+x),则 u’=2x,u"=2,u(n)=0(n≥3), [*] 所以 [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/Fwj4777K
0

最新回复(0)