首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为4阶矩阵,A=(α1,α2,α3,α4),若Ax=0的基础解系为(1,2,一3,0)T,则下列说法中错误的是( )
设A为4阶矩阵,A=(α1,α2,α3,α4),若Ax=0的基础解系为(1,2,一3,0)T,则下列说法中错误的是( )
admin
2020-05-09
23
问题
设A为4阶矩阵,A=(α
1
,α
2
,α
3
,α
4
),若Ax=0的基础解系为(1,2,一3,0)
T
,则下列说法中错误的是( )
选项
A、α
1
,α
2
,α
3
线性相关。
B、α
4
可由α
1
,α
2
,α
3
线性表出。
C、α
1
,α
2
,α
4
线性无关。
D、α
1
可由α
2
,α
3
,α
4
线性表出。
答案
B
解析
Ax=0的基础解系为(1,2,一3,0)
T
,可知r(A)=3且α
1
+2α
2
一3α
3
=0,则α
1
,α
2
,α
3
线性相关,所以(A)正确。
因为r(A)=3且α
1
,α
2
,α
3
线性相关,若α
4
可由α
1
,α
2
,α
3
线性表出,则
r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
)<3,
所以该选项错误,答案为(B)。
由于α
3
=
,可知α
3
能由α
1
,α
2
,α
4
线性表出,故
r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,α
4
)=3,
因此α
1
,α
2
,α
4
线性无关,所以(C)正确。
由于α
1
=一2α
2
+3α
3
,可知α
1
可由α
2
,α
3
,α
4
线性表出,所以(D)正确。
转载请注明原文地址:https://kaotiyun.com/show/G284777K
0
考研数学二
相关试题推荐
在t=0时,两只桶内各装10L的盐水,盐的浓度为15g/L,用管子以2L/min的速度将净水输入到第一只桶内,搅拌均匀后的混合液又由管子以2L/min的速度被输送到第二只桶内,再将混合液搅拌均匀,然后用1L/min的速度输出.求在任意时刻t>0,从第二只桶
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
设f(x),g(x)在[a,b]上连续,且满足∫abf(t)dt≥∫axg(t)dt,x∈[a,b)∫abf(t)dt=∫abg(t)dt,证明:∫abxf(x)dx≤∫abxg(x)dx.
设矩阵是矩阵A*的特征向量,其中A*是A的伴随矩阵,求a,b的值.
设f(χ)=(Ⅰ)若f(χ)处处连续,求a,b的值;(Ⅱ)若a,b不是(Ⅰ)中求出的值时f(χ)有何间断点,并指出它的类型.
设D=计算D;
求不定积分。
D是圆域的一部分,如图8.18所示,则[*]作极坐标变换,圆周方程为(y+1)2+x2=1,即x2+y2=-2y,即r=-2sinθ,积分区域D:[*]≤θ≤0,0≤r≤-2sinθ,[*]
设f(x,y)为连续函数,改变为极坐标的累次积分为
计算ln(1+x2+y2)dxdy,;其中D:x2+y2≤1.
随机试题
接入控制的实现方式有()种。
下列不属于鞭虫卵的特征是
A.腰椎结核B.腰椎骨折C.腰椎骨关节炎D.腰椎间盘突出症E.颈椎病X线片所见不能作为诊断依据的是
证券公司与单一客户签订定向资产管理合同,通过该客户的账户为客户提供资产管理服务的业务是( )。
威胁世界和平与稳定的主要根源是()。
在一场象棋循环赛中,每位棋手必须和其他棋手对弈一局,且同一对棋手只对弈一次。这次比赛共弈了36局棋,问棋手共有几位?()
西塞罗是古罗马著名的演说家和教育家,其代表作为()。
有以下程序段inti,n;for(i=0;i<8;i++){n=rand()%5;switch(n){case1:case3:printf("%d\n",n);break;case2:case4:printf("%
ChrisThomson,CEOofRemarCompanyLimited,saidatapressconferenceyesterdaythatheisconsideringTistoCorporation’spro
TodaythewriterHansChristianAndersenisknownasawriterofstoriesforchildren.Hepennedsomeofthebest-lovedfairyta
最新回复
(
0
)