首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上连续,且满足 ∫abf(t)dt≥∫axg(t)dt,x∈[a,b)∫abf(t)dt=∫abg(t)dt,证明:∫abxf(x)dx≤∫abxg(x)dx.
设f(x),g(x)在[a,b]上连续,且满足 ∫abf(t)dt≥∫axg(t)dt,x∈[a,b)∫abf(t)dt=∫abg(t)dt,证明:∫abxf(x)dx≤∫abxg(x)dx.
admin
2019-05-11
53
问题
设f(x),g(x)在[a,b]上连续,且满足
∫
a
b
f(t)dt≥∫
a
x
g(t)dt,x∈[a,b)∫
a
b
f(t)dt=∫
a
b
g(t)dt,证明:∫
a
b
xf(x)dx≤∫
a
b
xg(x)dx.
选项
答案
当x∈[a,b)时, ∫
a
x
f(t)dt≥∫
a
x
g(t)dt[*]∫
a
x
[f(t)一g(t)]dt≥0, ∫
a
b
f(t)dt=∫
a
b
g(t)dt[*]∫
a
b
[f(t)一g(t)]dt=0, ∫
a
b
xf(x)dx≤∫
a
b
xg(x)dx[*]∫
a
b
x[f(x)一g(x)]dx≤0, 令G(x)=∫
a
x
[f(t)一g(t)]dt,则G’(x)=f(x)一g(x),于是 ∫
a
b
x[f(x)一g(x)]dx=∫
a
b
xd(∫
a
x
[f(t)一g(t)]dt)[*] x∫
a
x
[f(t)-g(t)]dt|
a
b
-∫
a
b
{∫
a
x
[f(t)-g(t)]dt}dx =一∫
a
b
{∫
a
x
[f(t)一g(t)]dt}dx≤0(G(x)=∫
a
x
[f(t)一g(t)]dt≥0), 即∫
a
b
[f(x)-g(x)]dx≤0,即∫
a
b
xf(x)dx≤∫
a
b
xg(x)dx.
解析
转载请注明原文地址:https://kaotiyun.com/show/MAV4777K
0
考研数学二
相关试题推荐
证明:当χ≥0时,f(χ)=∫0χ(t-t2)sin2ntdt的最大值不超过.
设f(χ)在[0,a]上一阶连续可导,f(0)=0,令|f′(χ)|=M证明:|∫0af(χ)|dχ≤M.
设S(χ)=∫0χ|cost|dt.(1)证明:当nπ≤χ<(n+1)π时,2n≤S(χ)<2(n+1);(2)求.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
设A为三阶矩阵,A的各行元素之和为4,则A有特征值_______,对应的特征向量为_______.
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1-α3-α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
把二重积(χ,y)dχdy写成极坐标下的累次积分的形式(先r后θ),其中D由直线χ+y=1,χ=1,y=1围成.
设f(x,y)为连续函数,改变为极坐标的累次积分为=________.
微分方程满足初值条件y(0)=0,的特解是___________.
随机试题
法洛四联症患儿突然晕厥、抽搐,最可能的原因是
婴儿死亡率是衡量一个国家什么水平的敏感指标
血小板粘附功能增高见于
甲百货商场为增值税一般纳税人,2016年2月发生以下业务:(1)采取折扣方式销售一批货物,不含税总价格为52000元,由于对方购买量大,甲商场按原价九折优惠销售,开具的发票金额栏分别注明了销售额和折扣额。(2)采取“以旧换新”方式销售金项链一条,新项链
亚洲有中印两个人口大国,然而人口的庞大却与人才是否_________没有必然关系。人才供应缺口在一些国际化的行业中尤为_________,例如金融从业人员、工程研发人员等在全亚洲都供不应求。填入画横线部分最恰当的一项是:
被称为“生命中枢”的脑组织是()
“建设有中国特色的社会主义”这一科学命题是邓小平同志在()上提出的。
下列对IPv6地址FE01:0:0:050D:23:0:0:03D4的简化表示中,错误的是()
下列选项中不符合良好程序设计风格的是()。
VernonBowman,a75-year-oldfarmerfromruralIndiana,didsomethingthatgothimsued.Heplantedsoybeans(大豆)soldascattlef
最新回复
(
0
)