首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,将A的行及列分块,记成 对A作若干次初等行变换后,记成 则下列结论中错误的是 ( )
设A是m×n矩阵,将A的行及列分块,记成 对A作若干次初等行变换后,记成 则下列结论中错误的是 ( )
admin
2018-12-21
53
问题
设A是m×n矩阵,将A的行及列分块,记成
对A作若干次初等行变换后,记成
则下列结论中错误的是 ( )
选项
A、α
1
,α
2
,…,α
m
和α
1
’
,α
2
’
,…,α
m
’
有相同的线性相关性.
B、β
1
,β
2
,…,β
n
和β
1
’
,β
2
’
,…,β
n
’
有相同的线性相关性.
C、
x=0同解(s≤m).
D、(β
i1
,β
i2
,…,β
is
)x=0和(β
i1
’
,β
i2
’
,…,β
is
’
)x=0同解(s≤n).
答案
C
解析
初等变换不改变矩阵的秩
结论(A),(B)成立.
对(D),列向量作初等行变换后不改变方程组的解,其对应的部分组组成的方程组也同解,故(D)成立.由排除法,应选(C).
对(C),将α
1
和α
m
互换得部分向量组组成的方程组,则
显然不同解.故选(C).
转载请注明原文地址:https://kaotiyun.com/show/G8j4777K
0
考研数学二
相关试题推荐
(2015年)设矩阵,若集合Ω={1,2}则线性方程组Aχ=b有无穷多解的充分必要条件为【】
(2003年)设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βr线性表示,则【】
(2015年)设矩阵A=,且A3=O(Ⅰ)求a的值;(Ⅱ)若矩阵X满足X-XA2-AX+AXA2=E,其中E为3阶单位矩阵,求X.
(2008年)设函数y=y(χ)由参数方程确定,其中χ(t)是初值问题的解,求.
记平面区域D={(x,y)||x|+|y|≤1},计算如下二重积分:(1)I1=,其中f(t)为定义在(一∞,+∞)上的连续正值函数,常数a>0,b>0;(2)I2=(eλx一e一λy)dσ,常数λ>0.
计算∫arcsin(a>0是常数).
设A是s×n矩阵,B是A的前m行构成的m×b矩阵,已知A的行向量组的秩为r,证明:r(a)≥r+m一s.
设向量组α1=[α11,α21,…,αn1]T,α2=[α12,α22,…,αn2]T,…,αs=[α1s,α2s,…,αns]T,证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
设二阶常系数齐次线性微分方程以y1=e2x,y2=2e-x-3e2x为特解,求该微分方程.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α2,Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的。
随机试题
为了提高机床的使用率,尽量在一台机床上连续完成工件的粗、精加工。()
滑膜关节的辅助结构是
《国务院关于投资体制改革的决定》规定,对于政府投资项目仍继续实行审批制其中采用直接投资和资本金注入方式的,需要审批()。
路基除了其断面尺寸要符合设计要求外,还应满足下列()基本要求。
背景资料某光缆线路工程采用直埋敷设方式,途中需穿越生态环境脆弱的国家级生态保护区,部分路段沿电气化铁路敷设。施工单位对施工方案进行了策划,编制了详细的施工组织设计,工程顺利开工。测试中发现部分光缆对地绝缘不合格,且光纤接续衰减
利用5年期政府债券的空头头寸为10年期政府债券的多头头寸进行保值,当收益率曲线变陡时,该10年期政府债券多头头寸的经济价值会()。
信誉良好、近()年内未发生损害客户利益的重人事件的商业银行,可以向巾国银监会申请开展需批准的个人理财业务。
风景名胜区应当自设立之日起()内编制完成总体规划。
劳动法的构成体系包括()
行政组织功能类型主要分为()。
最新回复
(
0
)