首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A与B均是n阶矩阵,且R(A)+R(B)﹤n,证明方程组Ax=0与Bx=0有非零公共解.
设A与B均是n阶矩阵,且R(A)+R(B)﹤n,证明方程组Ax=0与Bx=0有非零公共解.
admin
2020-06-05
48
问题
设A与B均是n阶矩阵,且R(A)+R(B)﹤n,证明方程组Ax=0与Bx=0有非零公共解.
选项
答案
构造齐次线性方程组[*],设α
i
1
,α
i
2
,…,α
i
r
与β
j
1
,β
j
2
,…,β
j
t
分别是A与B行向量组的极大线性无关组,那么矩阵[*] 的行向量组可以由α
i
1
,α
i
2
,…,α
i
r
,β
j
1
,β
j
2
,…,β
j
t
线性表示.从而 [*]≤R(α
i
1
,α
i
2
,…,α
i
r
,β
j
1
,β
j
2
,…,β
j
t
)≤r+t=R(A)+R(B)﹤n 所以方程组[*]有非零解,即Ax=0与Bx=0有非零公共解.
解析
转载请注明原文地址:https://kaotiyun.com/show/G8v4777K
0
考研数学一
相关试题推荐
已知n维向量组(Ⅰ):α1,α2,…,αs和向量组(Ⅱ):β1,β2,…,βt的秩都等于r,那么下述命题不正确的是()
若n阶可逆矩阵A的属于特征值λ的特征向量是α,则在下列矩阵中,α不是其特征向量的是()
若向量组α1,α2,α3,α4线性相关,且向量α4不可由向量组α1,α2,α3线性表示,则下列结论正确的是().
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为().
设随机变量已知X与Y的相关系数ρ=1,则P{X=0,Y=1}的值必为()
设A是n阶矩阵,下列命题中正确的是()
已知α1=(1,1,-1)T,α2=(1,2,0)T是齐次方程组Aχ=0的基础解系,那么下列向量中Aχ=0的解向量是()
设f(x)在[0,1]上连续,且0≤f(x)≤1,试证在[0,1]内至少存在—个ξ,使f(ξ)=ξ
设函数f(χ)在[a,b]上连续,在(a,b)内可导且f(a)≠f(b),试证明存在η,ξ∈(a,b),使得
随机试题
群体压力来自于()
Christmaswascoming.Wewerehaving【C1】______weatherinLondonthatRobert【C2】______ChristmasweekinanItalianseasidewehad
体质因素与精神状态主要能影响人体的( )。
下列对港澳地区的铁路运输的表述错误的有()。
改革开放三十多年以来,广东经济发展连上新台阶,综合实力不断实现大跨越。1979—2012年,世界经济年均增长速度为2.8%,中国增速为9.8%,广东增速则达13.3%。持续较快的经济增速,推动广东经济总量不断跃上新台阶。自1989年开始,广东GDP总量(国
在后果预测中,下列()方法属于德尔菲法。
Ifyouwant______,youshouldspeakslowlyandclearlytothelisteners.
Inrecentyears,moreandmoreforeignersareinvolvedintheteachingprogramsoftheUnitedStates.Boththeadvantagesandth
Mostmeetingshaveanagenda.Foraformalmeeting,thisdocumentmaybehandedoutinadvancetoallparticipants.Foraninfor
NationalGeographicLiftsVeilonAirForceOneUntilFranklinD.Roosevelt,noU.S.Presidenttraveledbyairwhileinoffic
最新回复
(
0
)