首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证: (Ⅰ)存在η∈(1/2,1),使f(η)=η; (Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证: (Ⅰ)存在η∈(1/2,1),使f(η)=η; (Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
admin
2013-10-11
125
问题
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:
(Ⅰ)存在η∈(1/2,1),使f(η)=η;
(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f
’
(ξ)-λ[f(ξ)-ξ]=1.
选项
答案
(Ⅰ)由题设,引入辅助函数φ(x)=x-f(x),则φ(x)在[0,1]上连续,由已知条件f(1)=0及f(1/2)=1,知φ(1)=1-f(1)=1>0且[*] ,所以由闭区间上连续函数的介值定理知存在一点η∈(1/2,1),使得φ(n)=0, 即η-f(η)=0,因此存在η∈(1/2,1),使f(η)=η,证毕. (Ⅱ)引入辅助函数,由原函数法将所需证明的等式中的ξ改写为x, 有f
’
(x)-λ[f(x)-x]=1,即f
’
(x)-λf(x)=1-λx. 由一阶线性非齐次微分方程的通解公式得: 所以[f(x)-x]e
-λx
=C,至此可令辅助函数为g(x)=[f(x)-x]e
-λx
=-φ(x)e
-λx
, 由已知条件及(I)中结论,知g(x)也是连续函数, 且g(0)=[f(0)-0]e
0
=0,g(η)=-φ(η)e
-λη
=0. 由罗尔定理知存在一点ξ(0,η),使得g
’
(ξ)=0, 又g
’
(x)=-λe
-λx
[f(x)-x]+e
-λx
[f
’
(x)-1], 所以-λ[f(ξ)-ξ]+f
’
(ξ)-1=0 此即f
’
(ξ)-λ[f(ξ)-ξ]=1.证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/GOF4777K
0
考研数学三
相关试题推荐
毛泽东指出,中国共产党在中国革命中战胜敌人主要的法宝是()
党的十五大报告关于社会主义初级阶段基本特征的阐述主要包括()
中国革命道德内容丰富、历久弥新,对中国革命、建设和改革事业发挥着极其重要的作用。在协调推进“四个全面”战略布局、实现“两个一百年”奋斗目标、实现中华民族伟大复兴的中国梦的过程中,大力弘扬中国革命道德依然具有极其重要的现实意义。具体体现在
毛泽东在《论人民民主专政》一文中明确指出,人民民主专政的基础是工人阶级、农民阶级和城市小资产阶级的联盟,而且主要是工人和农民的联盟。原因在于,这两个阶级
1956年9月刘少奇在中共八大政治报告中指出当时国内的主要矛盾是()
将函数f(x)=e2x,x∈[0,π]展开成余弦级数.
图2.14中有三条曲线a,b,c,其中一条是汽车的位置函数的曲线,另一条是汽车的速度函数的曲线,还有一条是汽车的加速度函数的曲线,试确定哪条曲线是哪个函数的图形,并说明理由.
求出曲面z=xy上的点,使这点处的法线垂直于平面x+3y+z+9=0,并写出这法线的方程.
设随机变量X服从正态分布N(μ1,σ12),随机变量y服从正态分布N(μ2,σ22),且P{|X-μ1|<1}>P{|Y-μ2|<1},则必有().
随机试题
对于教育实验科学水平的评价,以下方法不可以用于检验和评价教育实验的科学性程度。()
非概率抽样
某种电器元件的寿命服从指数分布,其平均寿命为100小时,各元件之间的使用情况是独立的,利用中心极限定理,求16只这样的元件的寿命总和大于1920小时的概率.(附:0(0.8)=0.7881,0(0.9)=0.8159)
不表达Fcγ受体的细胞是
用四环素族类药物可致恒牙发生四环素牙的时期是
()对煤矿企业实际生产条件和安全条件进行审查是否符合煤炭生产许可证条件。
以下各项中,()是对报关员执业管理中涉及的时限正确的表述。
意大利的那不勒斯城附近有个石灰岩洞,人们带着牛马等大牲畜通过岩洞未发生问题,但是猫、老鼠等小动物走进洞里就倒地而死。后来人们经过检验发现,小动物的死亡与吸进大量二氧化碳有关。据此,可以推断出()。
[*]
用户界面是用户和数据库系统间的一条分界线,在分界线之下,用户是不可知的,用户界面定义在()。
最新回复
(
0
)