首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知P—1AP=α1是矩阵A属于特征值λ=1的特征向量,α2与α3是矩阵A属于特征值A=5的特征向量,那么矩阵P不能是( )
已知P—1AP=α1是矩阵A属于特征值λ=1的特征向量,α2与α3是矩阵A属于特征值A=5的特征向量,那么矩阵P不能是( )
admin
2017-12-29
32
问题
已知P
—1
AP=
α
1
是矩阵A属于特征值λ=1的特征向量,α
2
与α
3
是矩阵A属于特征值A=5的特征向量,那么矩阵P不能是( )
选项
A、(α
1
,—α
2
,α
3
)
B、(α
1
,α
2
+α
3
,α
2
一2α
3
)
C、(α
1
,α
3
,α
2
)
D、(α
1
+α
2
,α
1
一α
2
,α
3
)
答案
D
解析
若P
—1
AP=Λ=
,P=(α
1
,α
2
,α
3
),则有AP=PΛ,即
(Aα
1
,Aα
2
,Aα
3
)=(λ
1
α
1
,λ
2
α
2
,λ
3
α
3
),
可见α
i
是矩阵A属于特征值λ
i
(i=1,2,3)的特征向量,又因矩阵P可逆,因此α
1
,α
2
,α
3
线性无关。
若α是属于特征值λ的特征向量,则一α仍是属于特征值λ的特征向量,故选项A正确。
若α,β是属于特征值λ的特征向量,则α与β的线性组合仍是属于特征值λ的特征向量。本题中,α
2
,α
3
是属于λ=5的线性无关的特征向量,故α
2
+α
3
,α
2
—2α
3
仍是λ=5的特征向量,并且α
2
+α
3
,α
2
—2α
3
线性无关,故选项B正确。
对于选项C,因为α
2
,α
3
均是λ=5的特征向量,所以α
2
与α
3
谁在前谁在后均正确。故选项C正确。
由于α
1
,α
2
是不同特征值的特征向量,因此α
1
+α
2
,α
1
—α
2
不再是矩阵A的特征向量,故选项D错误。所以应选D。
转载请注明原文地址:https://kaotiyun.com/show/GUX4777K
0
考研数学三
相关试题推荐
设A是n阶方阵,2,4,…,2n是A的n个特征值,E是n阶单位阵.计算行列式|A一3E|的值.
设A是n×m阶矩阵,B是m×n矩阵,E是n阶单位阵,若AB=E,证明:B的列向量组线性无关.
设A是3阶矩阵,|A|=3,且满足|A2+2A|=0,|2A2+A|=0,则A*的特征值是________.
设n阶矩阵A的秩为1,证明:存在数μ,对任意正整数k,有Ak=μk-1A.
设a>0,函数f(x)在[0,+∞)上连续有界.证明:微分方程y’+ay=f(x)的解在[0,+∞)上有界.
微分方程y"一7y’=(x一1)2由待定系数法确定的特解形式(系数的值不必求出)是________.
求下列积分:
讨论是否存在,若存在,给出条件;若不存在,说明理由.
微分方程y"+2y’+2y=e-xsinx的特解形式为()
设f(x,y)在点(0,0)处连续,且其中a,b,c为常数.(1)讨论f(x,y)在点(0,0)处是否可微,若可微则求出df(x,y)|(0,0);(2)讨论f(x,y)在点(0,0)处是否取极值,说明理由.
随机试题
A.活血祛瘀,固冲安胎B.益气养血,固冲安胎C.补填填精,固冲安胎D.温补肾阳,固冲安胎E.补肾健脾,调理冲任
蠕形螨寄生于
A.推动作用B.营养作用C.气化作用D.防御作用E.固摄作用元气的主要功能是()
下列各项中,属于会计政策变更的是()。(2015年学员回忆版)
(2013年)甲公司为实现多元化经营,决定对乙公司进行长期股权投资。甲公司和乙公司适用的企业所得税税率均为25%,按净利润的10%提取盈余公积。投资业务的相关资料如下: (1)2009年11月10日,甲公司与丙公司签订了收购其持有的乙公司2000万股普
甲汽车租赁公司拟购置一批新车用于出租,现有两种投资方案,相关信息如下:方案一:购买中档轿车100辆,每辆车价格10万元,另需支付车辆价格10%的购置相关税费,每年平均出租300天,日均租金150元/辆,车辆预计使用年限8年,8年后变现价值为0,前
由正脊、四条垂脊、四条戗脊组成的屋顶形式称为()
在社会策划模式实施过程中,自我评估指的是由社会工作者()。
证明:.
在用Open语句打开文件时,如果省略“For方式”,则打开的文件的存在方式是______。
最新回复
(
0
)