首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b一a). (2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则f+’(0)存
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b一a). (2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则f+’(0)存
admin
2019-01-05
52
问题
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b一a).
(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
=A,则f
+
’(0)存在,且f
+
’(0)=A.
选项
答案
(1)作辅助函数φ(x)=f(x)一f(a)一[*],易验证φ(x)满足: φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 [*] 根据罗尔定理,可得在(a,b)内至少有一点ξ,使φ’(ξ)=0,即 [*] 所以f(b)-f(a)=f’(ξ)(b一a). (2)任取x
0
∈(0,δ),则函数f(x)满足在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此由拉格朗日中值定理可得,存在[*],使得 [*] 故f
+
’(0)存在,且f
+
’(0)=A.
解析
转载请注明原文地址:https://kaotiyun.com/show/GZW4777K
0
考研数学三
相关试题推荐
设a0=1,a1=0,an+1=(nan+an-1)(n=1,2,3…),S(x)为幂级数anxn的和函数.证明(1-x)S’(x)-xS(x)=0(x∈(-1,1)),并求S(x)表达式.
设X1,X2,…,Xn(n>2)相互独立且都服从N(0,1),Yi=Xi=一X(i=1,2,…,n).求(I)D(Yi)(i=1,2,…,n);(Ⅱ)Coy(Y1,Yn);(Ⅲ)P(Y1+Yn≤0).
设随机变量X的分布函数为F(x)=0.2F1(x)+0.8F1(2x),其中F1(y)是服从参数为1的指数分布的随机变量的分布函数,则D(X)为().
求级数的收敛域及和函数.
设A为三阶矩阵,A的特征值为λ1=λ2=1,λ3=3,对应的线性无关的特征向量为α1,α2,α3,令P1=(α1+α3,α2一α3,α3),则P1一1AP1=().
向直线上掷一随机点,假设随机点落入区间(一∞,0],(0,1]和(1,+∞)的概率分别为0.2,0.5和0.3,并且随机点在区间(0,1]上分布均匀.设随机点落入(一∞,0]得0分,落入(1,+∞)得1分,而落入(0,1]坐标为x的点得x分.试求得分x的分
设X1,X2,…,Xn是取自总体X的简单随机样本的数学期望为σ2,则a=_________,b=_______________.
已知(axy3一y2cosx)dx+(1+bysinx+3x2y2)dy为某二元函数f(x,y)的全微分,则常数
口袋内有四个同样的球,分别标有号码1,2,3,4.每次从中任取一个球(每次取后放回去),连续两次.如果第i次取到球上的编号记为ai,i=1,2,记事件A表示事件“a12≥4a2”,则该试验的样本空间Ω=____________;事件A=_________
[*]将分子化简后,应用等价无穷小因子代换。易知
随机试题
女,62岁,持续性胸痛2小时。2小时前出现胸骨后疼痛,休息后未减轻,逐渐出现呼吸困难。既往高血压和血脂异常病史。查体:BP130/70mmHg,双肺呼吸音清,心率86次/分,心律齐,A2>P2。心电图:V1~V6导联ST段抬高0.4mV,Ⅱ、Ⅲ、aVF导
经营者在市场交易中,应当遵循()的原则,遵守公认的商业道德。
建立进度控制文档管理系统,事先设计好各类进度报告的内容、格式及上报时间等,属于进度控制措施中的( )。
某机电安装工程项目,业主通过公开招标方式选择了某机电安装企业,双方签订了机电安装工程施工总承包合同,施工总承包企业又选择了一家劳务分包企业,将某分部工程的劳务作业分包给该劳务分包企业。在施工过程中发生如下事件。事件一:由于业主供应的工程材料延误,使
下列关于成本分析的方法,叙述错误的是()。
在理论和实践的基础体系上仍接近于原始佛教的上座部佛教又被称为()。
步兵:陆军:空军
BeforehighschoolteacherKimberlyRughgotdowntobusinessatthestartofarecentschoolweek,shejokedwithherstudents
PESTCONTROL(1)ManypestspeciesthatarenativetoNorthAmerica,suchaswhite-footedmiceandgroundmoles,aremorenu
PassageOne(1)Mrs.Sowerberryburstintoafloodoftears.ThisfloodoftearsleftMr.Sowerberrynoalternative.
最新回复
(
0
)