首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
非齐次线性方程组AX=b中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则( )
非齐次线性方程组AX=b中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则( )
admin
2019-05-15
46
问题
非齐次线性方程组AX=b中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则( )
选项
A、r=m时,方程组AX=b有解.
B、r=n时,方程组AX=b有唯一解.
C、m=n时,方程组AX=b有唯一解.
D、r<n时,方程组AX=b有无穷多解.
答案
A
解析
因A是m×n矩阵,若R(A)=m,增广矩阵(A,b)也只有m行,则
m=R(A)≤R(A,b)≤m,
有R(A)=R(A,b),故AX=b有解.应选A;
或由R(A)=m知A的行向量组线性无关,那么其延伸组必线性无关,故增广矩阵(A,b)的m个行向量也是线性无关的,亦即R(A)=R(A,b);
关于B、D不正确的原因是:由r≤n不能推出R(A)=R(A,b)(注意:A是m×n矩阵,m可能大于n),AX=b不一定有解.故B、D不成立.
至于C,当m=n时,AX=b可能无解,还可能有无穷多解(只有当r=m=n时,AX=b才有唯一解),故C不成立.
转载请注明原文地址:https://kaotiyun.com/show/Gbc4777K
0
考研数学一
相关试题推荐
(1998年)确定常数λ,使在右半平面x>0上的向量A(x,y)=2xy(x1+y2)λi一x2(x1+y2!)λj为某二元函数u(x,y)的梯度,求u(x,y).
(2002年)设函数f(x)在(一∞,+∞)内具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d).记当ab=cd时,求I的值.
(2009年)求二元函数f(x,y)=x2(2+y2)+ylny的极值.
(2015年)若函数z=z(x,y)由方程ez+xyz+x+cosx=2确定,则dz|(0,1)=_____________.
(1993年)设函数f(x)=πx+x2(一π<x<π)的傅里叶级数展开式为则其中系数b3的值为___________.
(2013年)设数列{an)满足条件:a0=3,a1=1,an-2一n(n一1)an=0(n≥2),S(x)是幂级数的和函数.求S(x)的表达式.
设y(x)为微分方程y"一4y’+4y=0满足初始条件y(0)=1,y’(0)=2的特解,则∫01y(x)dx=___________.
设随机变量Y服从参数为1的指数分布,a为常数且大于零,则P{Y≤a+1|Y>a}=________。
设常数a>0,积分讨论I1与I2谁大谁小,并给出推导过程.
随机试题
发病一个半小时后的脑出血发病2周后的脑出血
一患儿发热3天后出皮疹,皮疹位于颈部、面部、躯干、四肢、手心、足心,体温不退。该病常见并发症不包括
依照我国刑事诉讼法的规定,公安机关对于已经超过追诉时效期限的案件:()
到2010年,我国城市节水的目标是南方沿海缺水城市达到()。
铁路工程招标中,下列属于标段划分原则的有()。
针对某种具体的物价与工资形势,由政府出面施加压力来扭转局势的收入政策是( )。
()是指以期限在一年以下的金融资产为交易标的物的短期金融市场。
对于大众来说,科学无处不在,它完全可以成为社会流行文化的一部分,享受科学文化知识就像看书、读报、听音乐、看电影一样。近日,由中国科协主办的“典赞·2016科普中国”活动揭晓了2016年度十大“科学”流言终结榜,同时揭晓的还有年度十大科学传播事件
下列不属于“三通”的是()。
某中学发现有学生课余用扑克玩带有赌博性质的游戏,因此规定学生不得带扑克进入学校,不过即使是硬币,也可以用作赌具,但禁止学生带硬币进入学校是不可思议的,因此,禁止学生带扑克进学校是荒谬的。以下哪项如果为真,最能削弱上述论证?
最新回复
(
0
)