首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3. 证明α1,α2,α3线性无关;
设A为3阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3. 证明α1,α2,α3线性无关;
admin
2018-08-03
41
问题
设A为3阶矩阵,α
1
,α
2
为A的分别属于特征值一1,1的特征向量,向量α
3
满足Aα
3
=α
2
+α
3
.
证明α
1
,α
2
,α
3
线性无关;
选项
答案
设存在一组常数k
1
,k
2
,k
3
,使得 k
1
α
1
+k
2
α
2
+k
3
α
3
=0 ① 用A左乘①式两端,并利用Aα
1
=一α
1
,α
2
=α
2
, 一k
1
α
1
+(k
2
+k
3
)α
2
+k
3
α
3
=0 ② ①一②,得 2k
1
α
1
一k
3
α
2
=0 ③ 因为α
1
,α
2
是A的属于不同特征值的特征向量,所以α
1
,α
2
线性无关,从而由③式知走k
1
=k
3
=0,代入①式 得k
2
α
2
=0,又由于α
2
≠0,所以k
2
=0,故α
1
,α
2
,α
3
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/Grg4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f"(x)一f(x)=0在(0,1)内有根.
设f(x)在[0,1]上有定义,且exf(x)与e-f(x)在[0,1]上单调增加.证明:f(x)在[0,1]上连续.
设随机变量X的密度函数为f(x)=,则E(X)=___________,D(X)___________.
f(x)在[_一1,1]上三阶连续可导,且f(一1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(一1,1),使得f"’(ξ)=3.
二阶常系数非齐次线性微分方程y"一2y’一3y=(2x+1)e-x的特解形式为().
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设向量组α1,α2,…,αn—1为n维线性无关的列向量组,且与非零向量β1,β2正交.证明:β1,β2线性相关.
考虑柱坐标系下的三重累次积分I=3dz.(Ⅰ)将I用直角坐标(Oxyz)化为累次积分;(Ⅱ)将I用球坐标化为累次积分;(Ⅲ)求I的值.
证明二次型xTAx正定的充分必要条件是A的特征值全大于0.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.(Ⅰ)求矩阵A的特征值;(Ⅱ)求可逆矩阵P使P-1AP=A.
随机试题
简述外汇管理的意义。
关于胸腔积液病因的描述,哪项是正确的
A.静脉血栓尾部B.微血栓C.感染性心内膜炎时心瓣膜血栓D.静脉石E.心房球状血栓混合血栓
A.《药品进口注册证》B.《医药产品注册证》C.《进口药品通关单》D.《医疗机构执业许可证》E.《药品经营许可证》根据《中华人民共和国药品管理法实施条例》进口日本生产的药品应取得
东北某市一建筑工地在施工中,将埋藏地下的装有有毒物质的罐体损坏,导致罐内有毒物质泄漏,附近居民发生大面积中毒事件。那么,有关部门应如何处理?
上海证券交易所账户挂失更换证券账户的程序正确的说法有()。
下列关于工会在市场经济体系中的作用,说法错误的是()。
会议杀手是指一些人在会议中习惯性跑题、收邮件发短信、推翻已经达成的决策等等来打乱会议的正常进行,这种扰乱会议的人就被叫做“会议杀手”。如果能够制定明确的会议议程、应对方法,可使会议变得更有成效。根据上述定义,下列属于会议杀手的是:
5岁的星星喜欢帮妈妈洗衣服,但总弄得全身湿湿的,遭到了妈妈的喝斥,并禁止她再洗衣服。此阶段儿童发展的任务是()。
(2010年单选28)1947年成立的第一个民族自治政府即内蒙古自治区政府的法律依据是()。
最新回复
(
0
)