首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为n—1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是( )
设A是秩为n—1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是( )
admin
2019-01-14
29
问题
设A是秩为n—1的n阶矩阵,α
1
,α
2
是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是( )
选项
A、α
1
+α
2
B、kα
1
C、k(α
1
+α
2
)
D、k(α
1
—α
2
)
答案
D
解析
因为A是秩为n—1的n阶矩阵,所以Ax=0的基础解系只含一个非零向量。又因为α
1
,α
2
是方程组Ax=0的两个不同的解向量,所以α
1
—α
2
必为方程组Ax=0的一个非零解,即α
1
—α
2
是Ax=0的一个基础解系,所以Ax=0的通解必定是k(α
1
—α
2
),故选D。
此题中其他选项不一定正确。因为通解中必有任意常数,所以A选项不正确;若α
1
=0,则B选项不正确;若α
1
= —α
2
≠0,则α
1
+α
2
=0,此时C选项不正确。
转载请注明原文地址:https://kaotiyun.com/show/GyM4777K
0
考研数学一
相关试题推荐
计算累次积分:I=∫01dx∫1x+1ydy+∫12dx∫xx+1ydy+∫23dx∫x3ydy.
求函数在点A(1,0,1)沿点A指向8(3,一2,2)方向的方向导数.
设α1,α2,α3,α4线性无关,β1=2α1+α3+α4,β2=2α1+α2+α3,β3=α2一α4,β4=α3+α4,β5=α2+α3.(1)求r(β1,β2,β3,β4,β5);(2)求β1,β2,β3,β4,β5的一个最大无关
设平面区域D是由坐标为(0,0),(0,1),(1,0),(1,1)的四个点围成的正方形.今向D内随机地投入10个点,求这10个点中至少有2个点落在曲线y=x2与直线y=x所围成的区域D1内的概率.
(1)问k为何值时A可相似对角化?(2)此时作可逆矩阵U,使得U-1AU是对角矩阵.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=α1+2α2+2α3,Aα2=2α1+α2+2α3,Aα3=2α1+2α2+α3.(1)求A的特征值.(2)判断A是否相似于对角矩阵?
设随机变量X和Y相互独立,且X~N(1,2),Y~N(一3,4),则随机变量Z=一2X+3Y+5的概率密度为f(z)=_____.
设二维连续型随机变量(X,Y)的联合概率密度为(I)求X与Y的相关系数;(Ⅱ)令Z=XY,求Z的数学期望与方差.
已知一条抛物线通过x轴上两点A(1,0),B(3,0),方程为y=a(x-1)(x-3),求证:两坐标轴与该抛物线所围成的面积等于x轴与该抛物线所围成的面积.
微分方程y’’+6y’+9y=0的通解y=______.
随机试题
漏洞评估技术具有哪些主要优点
低压部分是指节流阀后至压缩机的吸气阀门前,也称为低压系统。()
女性,35岁。右上腹痛2天,伴恶心、呕吐,今起疼痛阵发性加剧,伴畏寒,发热。体检:T38℃,巩膜无黄染,右上腹有压痛。诊断首先考虑
纵产式不包括()
ShesometimesusesWeChat________mymobilephone,butonlytocontacthermother.
毛泽东指出的中国无产阶段所具有的自己的特殊优点的特点是()。
决策的过程。(2007年简答题)
"Poverty",wroteAristotle,"istheparentofcrime."Butwasheright?Certainly,povertyandcrimeare【C1】______.Andtheidea
Thecaris______.Thebikeis______.
A、ToprotecttheenvironmentinGhana.B、TogetmoreoilfromtheAllanblackiaplant.C、Togrowmoretreesandearnmoney.D、To
最新回复
(
0
)