首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(A)=g(b)=0,试证: (Ⅰ)在开区间(a,b)内g(x)≠0; (Ⅱ)在开区间(a,b)内至少存在一点ξ,使
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(A)=g(b)=0,试证: (Ⅰ)在开区间(a,b)内g(x)≠0; (Ⅱ)在开区间(a,b)内至少存在一点ξ,使
admin
2017-01-21
65
问题
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(A)=g(b)=0,试证:
(Ⅰ)在开区间(a,b)内g(x)≠0;
(Ⅱ)在开区间(a,b)内至少存在一点ξ,使
选项
答案
(Ⅰ)利用反证法。假设存在c∈(a,b),使得g(c)=0,则对g(x)在[a,c]和[c,b]上分别应用罗尔定理,可知存在ξ
1
∈(a,c)和ξ
2
∈(c,b),使得g ’(ξ
1
)=g’(ξ
2
)=0成立。 接着再对g ’(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,可知存在ξ
3
∈(ξ
1
,ξ
2
),使得g"(ξ
3
)=0成立,这与题设条件g"(x)≠0矛盾,因此在开区间(a,b)内g(x)≠0。 (Ⅱ)构造函数F(x)=f(x)g’(x)—g(x)f’(x),由题设条件得,函数F(x)在区间[a,b]上是连续的,在区间(a,b)上是可导的,且满足F@(A)@=F(b)=0。根据罗尔定理可知,存在点ξ∈(a,b),使得F’(ξ)=0。即f(ξ)g"(ξ)—f"(ξ)g(ξ)=0,因此可得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/H1H4777K
0
考研数学三
相关试题推荐
方程yy〞=1+yˊ2满足初始条件y(0)=1,yˊ(0)=O的通解为________.
四名乒乓球运动员——1,2,3,4参加单打比赛,在第一轮中,1与2比赛,3与4比赛.然后第一轮中的两名胜者相互比赛决出冠亚军,两名败者也相互比赛决出第三名和第四名.于是比赛的一种最终可能结果可以记作1324(表示1胜2,3胜4,然后1胜3,2胜4).设
根据二重积分的几何意义,确定下列积分的值:
设an>0(n=1,2,…,且an收敛,常数λ∈(0,π/2),则级数(-1)n(ntanλ/n)a2n
利用定积分计算下列极限:
计算下列第一类曲线积分:
设f(x,y)在(x0,y0)某邻域有定义,且满足:f(x,y)=f(x0,y0)+n(x一x0)+b(y—y0)+。(p)(p→o),其中a,b为常数,,则
设{an}与{bn}为两个数列,下列说法正确的是().
随机试题
可资鉴别恶性组织细胞病与实体瘤的是
门静脉高压症发生后的侧支循环有哪些?
在单一法人客户的财务状况分析中,财务比率内容主要包括()。
某会计师事务所拥有170万元的流动资产及90万元的流动负债,下列交易可以使该事务所流动比率下降的有()。
根据《劳动法》的规定;( )不属于劳动者权利。
设圆C与两圆(x+)2+y2=4,(x一)2+y2=4中的一个内切,另一个外切.已知点且P为L上动点,求|MP|—|FP|的最大值及此时点P的坐标.
试比较伊拉斯谟与拉伯雷、蒙旦的教育思想。
嘉禾医院安排3个男护士T、M、B和3个女护士H、S和J从周一到周六每个人工作1天。这6天中每天都有人工作。有6个人中的任何2个都不在同一天工作。(1)在M工作的那一天与J工作的那一天之间恰好有2个完整的工作日,且在一个工作周内,M总是在J之前工
ChinatoHelpEuropeDevelopGPSRivalChinaistocontributetoanewglobalsatellitenavigationsystembeingdevelopedby
Mirrorimagesisoftendifferentfromthe"feltimage".
最新回复
(
0
)