首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n>1,n元齐次方程组AX=0的系数矩阵为 (1)讨论a为什么数时AX=0有非零解? (2)在有非零解时求通解.
设n>1,n元齐次方程组AX=0的系数矩阵为 (1)讨论a为什么数时AX=0有非零解? (2)在有非零解时求通解.
admin
2018-11-23
39
问题
设n>1,n元齐次方程组AX=0的系数矩阵为
(1)讨论a为什么数时AX=0有非零解?
(2)在有非零解时求通解.
选项
答案
(1)用矩阵消元法,把第n行除以n移到第一行,其他行往下顺移.再第i行减第一行的i倍(i>0) [*] a=0时r(A)=1,有非零解. 下面设a≠0,对右边的矩阵继续进行行变换:把第2至n各行都除以a,然后把第1行减下面各行后换到最下面,得 [*] 于是当a=-n(n+1)/2时r(A)=n-1,有非零解. (2)n=0时AX=0与χ
1
+χ
2
+…+χ
n
=0同解,通解为 c
1
(1,-1,0,…,0)
T
+c
2
(1,0,-1,…,0)
T
+…+c
n-1
(1,0,0,…,-1)
T
,c
i
任意. a=-n(n+1)/2时,通解为 c(1,2,3,…,n)
T
,c任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/H9M4777K
0
考研数学一
相关试题推荐
过三点A(1,1,-1),B(-2,-2,2)和C(1,-1,2)的平面方程是______
设两个相互独立的事件A与B至少有一个发生的概率为,A发生B不发生的概率与B发生A不发生的概率相等,则P(A)=__________.
某公司每年的工资总额在比上一年增加20%的基础上再追加2百万元.若以W1表示第t年的工资总额(单位:百万元),则Wt满足的差分方程是__________.
设三阶实对称矩阵的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A的属于特征值6的特征向量.(1)求A的另一特征值和对应的特征向量;(2)求矩阵A.
设αi=(ai1,ai2…,ain)T(i=1,2,…,r;r<n)是n维实向量,且α1,…,αr线性无关.已知β=(b1,b2,…,bn)T是线性方程组的非零解向量,试判断向量组α1,…,αr,β的线性相关性.
袋中有a白b黑共a+b只球,现从中随机、不放回地一只一只地取球,直至袋中所剩之球同色为止.求袋中所剩之球全为白球的概率.
为了研究施肥和不施肥对某种农作物产量的影响独立地,选了13个小区在其他条件相同的情况下进行对比试验,得收获量如下表:设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t0.975(11)=2.201,下
(02年)设总体X的概率分别为其中θ是未知参数,利用总体X的如下样本值3,1,3,0,3,1,2,3求θ的矩估计值和最大似然估计值.
设A,B,C是三个事件,与事件A互斥的事件是()
设n>1,n元齐次方程组AX=0的系数矩阵为(1)讨论a为什么数时AX=0有非零解?(2)在有非零解时求通解.
随机试题
压缩气体遇燃烧、爆炸等险情时,应向气瓶覆盖沙土,并及时将气瓶移出危险区域。
试述尊重客观规律和发挥主观能动性辩证统一的原理及其现实意义。
患者,女性,40岁。偶然发现左侧乳房肿块2个多月,无疼痛,肿块大小不随月经周期变化,自服治疗乳腺增生药物,病情无明显改善而就诊。既往体健,月经规律,无外伤史。查体发现:左乳外上象限距乳头3cm处一直径扪及约2cm大小的质硬肿块,无压痛,肿块呈椭圆形,与表面
A.补肝汤B.膈下逐淤汤C.八珍汤D.清营汤合犀角地黄汤E.右归丸
某企业2013年6月发生了4项经济业务:(1)预付下季度房租10000元;(2)收到6月份销售商品贷款35000元,款项已存入银行;(3)购买2000元的办公用品,已付款;(4)预收购货方定金12000元,货物尚未发生。以权责发生制为计算基础时,该企业6月
关于资本的本质,以下说法中正确的是()。
A、 B、 C、 B
Nowadays,somestudentshavedroppedoffschooltostarttheirownenterprises.Theyhavetheirownidol:BillGateswhohaslef
Wecan____withpeopleinmostpartsoftheworldbytelephone.
【B1】【B20】
最新回复
(
0
)