首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
为了研究施肥和不施肥对某种农作物产量的影响独立地,选了13个小区在其他条件相同的情况下进行对比试验,得收获量如下表: 设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t0.975(11)=2.201,下
为了研究施肥和不施肥对某种农作物产量的影响独立地,选了13个小区在其他条件相同的情况下进行对比试验,得收获量如下表: 设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t0.975(11)=2.201,下
admin
2017-04-19
29
问题
为了研究施肥和不施肥对某种农作物产量的影响独立地,选了13个小区在其他条件相同的情况下进行对比试验,得收获量如下表:
设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t
0.975
(11)=2.201,下侧分位数).
选项
答案
设施肥与不施肥的农作物产量分别为总体X与Y,X~N(μ
1
,σ
2
),Y~N(μ
2
,σ
2
),本题中n=6,[*]=4,1一α=0.95,故μ
1
一μ
2
的置信下限为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/c5u4777K
0
考研数学一
相关试题推荐
设X服从[a,b]上的均匀分布,证明αX+β(α>0)服从[aα+β,bα+β]上的均匀分布.
3个电子元件并联成一个系统,只有当3个元件损坏2个或2个以上时,系统便报废.已知电子元件的寿命服从参数为1/1000的指数分布,求系统的寿命超过1000h的概率.
用区间表示下列点集,并在数轴上表示出来:(1)I1={x||x+3|<2}(2)I2={x|1<|x-2|<3}(3)I3={x||x-2|<|x+3|}
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)丨x2+y2+z2≤t2},D(t)={(z,y)丨x2+y2≤t2}.讨论F(t)在区间(0,+∞)内的单调性;
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设数列{an}满足条件:a0=3,a1=1,an-2-n(n-1)an=0(n≥2),S(x)是幂级数的和函数。证明:S"(X)-S(X)=0;
设(X1,X2,…,X3)(n≥2)为标准正态总体,X的简单随机样本,则().
判别级数的敛散性,若收敛求其和.
根据阿贝尔定理,已知在某点x1(x1≠x0)的敛散性,证明该幂级数的收敛半径可分为以下三种情况:(1)若在x1处收敛,则收敛半径R≥|x1一x0|;(2)若在x1处发散,则收敛半径R≤|x1一x0|;(3)若在x1处条件收敛,则收敛半径R=|x1一x
随机试题
( )是国家社会保障制度的核心与重要组成部分,从性质而言不以营利为目的。
细菌性痢疾患者的饮食宜()
女婴,9个月,腹泻2天,轻度脱水,轻度酸中毒。在无明显呕吐腹胀时,第1天补液首选
钢筋混凝土柱下条形基础梁的高度与柱距的比值,宜采用下列哪项?[2006年第137题]
如图10-17所示,半圆形明渠,半径为rc=4m,其水力半径R为()m。
在儿童节前夕,曙光幼儿园受到其他学校的邀请,准备排练节目。华华是曙光幼儿园中班的学生,由于爱好跳舞,向老师申请了参加《我们的祖国是花园》的舞蹈表演。但由于华华害羞,在训练过程中,由于放不开经常跳错,不是跟不上其他小朋友的节拍,就是动作不到位,负责训练的教师
婴儿可以从照料者那里寻求安慰、支持和保护。从这些经历中学会一些东西,不管照料者是否为婴儿的亲生父母。依恋是儿童正常社会发展的基础,只有限制儿童依恋性形成的极端条件,才能干扰儿童与成人形成依恋关系。由此可推出:
scalebackproduction
[A]supper[B]lunch[C]ship[D]story[E]homework[F]dictionary[G]menuYoucanuseittofindoutmeaningsofwords.
沉迷于
最新回复
(
0
)