首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设g(x)可导,|g’(x)|<1,且当a≤x≤b时,a<g(x)<b,又x+g(x)-2f(x)=0,若{xn}满足xn+1=f(xn),n=0,1,2,…,x0∈[a,b]。证明: 唯一的ξ∈[a,b],使得f(ξ)=ξ.
设g(x)可导,|g’(x)|<1,且当a≤x≤b时,a<g(x)<b,又x+g(x)-2f(x)=0,若{xn}满足xn+1=f(xn),n=0,1,2,…,x0∈[a,b]。证明: 唯一的ξ∈[a,b],使得f(ξ)=ξ.
admin
2022-03-23
59
问题
设g(x)可导,|g’(x)|<1,且当a≤x≤b时,a<g(x)<b,又x+g(x)-2f(x)=0,若{x
n
}满足x
n+1
=f(x
n
),n=0,1,2,…,x
0
∈[a,b]。证明:
唯一的ξ∈[a,b],使得f(ξ)=ξ.
选项
答案
由x+g(x)-2f(x)=0,有f(x)=[*][x+g(x)] 令F(x)=f(x)-x=[*][g(x)-x] 则F(a)=[*][g(a)-a]>0,F(b)=[*][g(b)-b]<0 由零点定理可知,[*]ξ∈(a,b),使得F(ξ)=0,即f(ξ)=ξ. 又F’(x)=f’(x)-1,方程x+g(x)-2f(x)=0 两边对x求导数,有 1+g’(x)-2f’(x)=0,即f’(x)=[*][1+g’(x)] 由-1<g’(x)<1,则 0<f’(x)<1 ① 知F’(x)<0,F(x)单调减少,故ξ唯一。
解析
转载请注明原文地址:https://kaotiyun.com/show/HBR4777K
0
考研数学三
相关试题推荐
已知函数y=f(x)对一切x满足xf’’(x)+3x[f’(x)]2=1一e-x.若f’(x0)=0.(x0≠0),则
设函数f(x)=,则()
已知,A*是A的伴随矩阵,若r(A*)=1,则a=()
设函数f(t)连续,则二次积分
A是n阶方阵,A*是A的伴随矩阵,则|A*|=()
设随机变量X1与X2相互独立,其分布函数分别为则X1+X2的分布函数F(x)=
设A、B、C是三个相互独立的随机事件,且0<P(C)<1,则在下列给定的四对事件中不相互独立的是()
(15年)(Ⅰ)设函数u(χ),v(χ)可导,利用导数定义证明[u(χ)v(χ)]′=u′(χ)v(χ)+u(χ)v′(χ);(Ⅱ)设函数u1(χ),u2(χ),…,un(χ)可导,f(χ)=u1(χ)u2(χ)…un(χ),写出f(χ)的求导公
已知方程组有解,证明方程组无解.
如果n个事件A1,A2,…,An相互独立,证明:将其中任何m(1≤m≤n)个事件改为相应的对立事件,形成的新的n个事件仍然相互独立;
随机试题
中国城市群面临的主要问题有哪些?
Itwasanemptyhut,butatleastitofferedusa______forthenight.
《本草拾遗》的作者是()(2001年第39题)
青岛××电子显示器有限公司(370223××××)购买进口显示器元器件一批,货物从日本大阪起运,经韩国换装运输工具运至青岛。该批货物中的电视机用印刷电路板组件(ASSYBLUP;Bordeaux;法定计量单位:千克)和非片式固定电阻[R-METALO
申请设立期货公司,应当具备的条件有()。
商业银行应当尽可能地提高负债的流动性和资产的稳定性,以降低流动性风险。()
对纳税信用评价为A级的纳税人,税务机关的激励措施包括()。
后世对福建人林纾主要的评价是()。
2013年全年,某市农业总产值412.36亿元,增长3.8%,其中,种植业产值217.16亿元,增长4.4%;林业产值3.09亿元,增长2.8%;畜牧业产值108.63亿元,增长2.4%,渔业产值73.20亿元,增长5.4%,农林牧渔服务业产值10.82亿
ChooseTWOletters,A-E.WhichTWOpiecesofadvicedoesthespeakergiveforsettinggoals?AwritegoalsdownBhaveachievabl
最新回复
(
0
)