首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0。 证明在[-a,a]上至少存在一点η,使a3f"(η)=3∫-aaf(x)dx。
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0。 证明在[-a,a]上至少存在一点η,使a3f"(η)=3∫-aaf(x)dx。
admin
2019-08-01
72
问题
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0。
证明在[-a,a]上至少存在一点η,使a
3
f"(η)=3∫
-a
a
f(x)dx。
选项
答案
方法一:将f(x)从-a到a积分 ∫
-a
a
f(x)dx=∫
-a
a
f’(0)xdx+1/2∫
-a
a
f"(ξ)x
2
dx。 而∫
-a
a
f’(0)xdx=f’(0)∫
-a
a
xdx=f’(0)×[*]|
-a
a
=0, 从而有∫
-a
a
f(x)dx=1/2∫
-a
a
f"(ξ)x
2
dx。 因f"(x)在[-a,a]上连续,故有f"(x)在[-a,a-]上存在最大值M,最小值m(由闭区间上的连续函数必有最大值和最小值),即 [*] 易得m≤f"(x)≤M,x∈[-a,a]。 因此∫
-a
a
f(x)dx=1/2∫
-a
a
f"(ξ)x
2
dx≤1/2M∫
-a
a
x
2
dx=1/2Mx
3
/3|
-a
a
=Ma
3
/3, 同理∫
-a
a
f(x)dx=1/2∫
-a
a
f"(ξ)x
2
dx≥1/2m∫
-a
a
x
2
dx=1/3ma
3
。 因此m≤3/a
3
∫
-a
a
f(x)dx≤M。 由连续函数介值定理知,存在η∈[-a,a],使 f"(η)=3/a
3
∫
-a
a
f(x)dx, 即a
3
f"(η)=3∫
-a
a
f(x)dx。 方法二:观察要证的式子,构造变限函数:F(x)=∫
-x
x
f(t)dt,易得F(0)=0, F’(x)=f(x)+f(-x)(变限积分求导), F"(x)=[f(x)+f(-x)]’=f’(x)-f’(-x), F"’(x)=[f’(x)-f’(-x)]’=f"(x)+f"(-x), 则有F’(0)-f(0)+f(-0)-0+0=0, F"(0)-f’(0)-f’(-0)=f’(0)-f’(0)=0。 将它展开成二阶带拉格朗日余项麦克劳林公式: F(x)=F(0)+F’(0)x+[*]F"(0)x
2
+[*]F"’(ξ)x
3
=0+0+[*]F"’(ξ)x
3
=1/6[f"(ξ)+f"(-ξ)]x
3
, 其中ξ∈(0,x),x∈[-a,a]。 由于f"(x)在[-a,a]上连续,则由连续函数介值定理,存在η∈[-ξ,ξ],使 f"(η)=1/2[f"(ξ)+f"(-ξ)], 于是存在η∈(-a,a),使 F(x)=0+0+[*]F"’(ξ)x
3
=[*][f"(ξ)+f"(-ξ)]x
3
=1/3f"(η)x
3
, 把x=a代入F(x)有F(a)=1/3f"(η)a
3
即 ∫
-a
a
f(x)dx=a
3
/3f"(η),η∈(-a,a), 即a
3
f"(η)=3∫
-a
a
f(x)dx,η∈(-a,a)。
解析
转载请注明原文地址:https://kaotiyun.com/show/HJN4777K
0
考研数学二
相关试题推荐
一质点从时间t=0开始直线运动,移动了单位距离使用了单位时间,且初速度和术速度都为零.证明:在运动过程中存在某个时刻点,其加速度绝对值不小于4.
计算∫01dx∫x2x(x2+
求极限
计算二重积分,其中D由y=x与y=x4围成.
设A是3阶实对称矩阵,特征值是0,1,2.如果α1=(1,2,1)T与α2=(1,-1,1)T分别是λ=0与λ=1的特征向量,则λ=2的特征向量是_____.
设A是3阶矩阵,且各行元素之和都是5,则A必有特征向量_____.
设A是n阶实矩阵,有Aξ=λξ,ATη=μη,,其中λ,μ是实数,且λ≠μ,ξ,η是n维非零向量,证明:ξ,η正交.
设数列{xn}满足0<x1<1,ln(1+xn)=exn+1一1(n=1,2,…).证明存在,并求该极限.
用配方法化下列二次型为标准形:f(x1,x2,x3)=2x1x2+2x1x3+6x2x3
设f(x)=∫xx+π/2|sint|dt。求f(x)的值域。
随机试题
“生产成本”账户期末借方余额意味着期末()。
下列画横线的句子翻译错误的是()
男,45岁,视力下降1年,矫正视力:右0.5左1.0;眼压:右22mmHg左18mmHg;角膜透明、前房正常、晶状体透明;眼底:视盘C/D右0.8,左0.6;视野:右眼鼻侧阶梯、左正常;双眼房角在静态下均可见睫状体带。本患者应诊断为
按五行属性分类,五化中属土者是
男孩,2岁。1岁时患麻疹后食欲差,常有腹泻,身高83cm,体重7600g,面色苍白,皮肤干燥,腹部皮下脂肪0.3cm,心音低钝,脉搏缓慢。其主要诊断应是
29号元素的核外电子分布式为()。[2011年真题]
银监会对原国有商业银行和股份制商业银行进行评估的指标不包括()。
所谓国家课程,是由__________编制和审定的课程。
下列对联与其适用场合,搭配不当的是:
A、Localcustomsandlifestyles.B、Thedifferentsurroundings.C、Thedevelopmentoftechnology.D、Thedifferentartistictastes.
最新回复
(
0
)