首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为 ①求A.②证明A+E是正定矩阵.
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为 ①求A.②证明A+E是正定矩阵.
admin
2017-10-21
79
问题
二次型f(x
1
,x
2
,x
3
)=X
T
AX在正交变换X=QY下化为y
1
2
+y
2
2
,Q的第3列为
①求A.②证明A+E是正定矩阵.
选项
答案
①条件说明 [*] 于是A的特征值为1,1,0,并且Q的第3列[*] 是A的特征值为0的特征向量.记α
1
=(1,0,1)
T
,它也是A的特征值为0的特征向量. A是实对称矩阵,它的属于特征值1的特征向量都和α
1
正交,即是方程式x
1
+x
3
=0的非零解. α
2
=(1,0,一1)
T
,α
3
=(0,1,0)
T
是此方程式的基础解系,它们是A的特征值为1的两个特征向量. 建立矩阵方程 A(α
1
,α
2
,α
3
)=(0,α
2
,α
3
), 两边做转置,得 [*] 解此矩阵方程 [*] ②A+E也是实对称矩阵,特征值为2,2,1,因此是正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/HOH4777K
0
考研数学三
相关试题推荐
设xy=xf(x)+yg(z),且xf’(z)+yg’(z)≠0,其中z=z(x,y)是z,y的函数.证明:
用配方法化下列二次型为标准形:f(x1,x2,x3)=2x1x2+2x1x3+6x2x3.
用配方法化二次型f(x1,x2,x3)=x12+2x1x2+2x1x3—4x32为标准形.
设A,B为n阶实对称矩阵,则A与B合同的充分必要条件是().
设A=有三个线性无关的特征向量.(1)求a;(2)求A的特征向量;(3)求可逆矩阵P,使得P—1AP为对角阵.
设n阶矩阵A与对角矩阵相似,则().
A2一B2=(A+B)(A—B)的充分必要条件是__________.
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求实数a的值;
随机试题
Allflights______becauseofthestorm,theydecidedtogotoBeijingbytrain.
麻疹的传播途径是
采用滤膜测尘法检测隧道内呼吸性粉尘浓度后,在称量滤膜重量前,应将滤膜置于干燥器内()以上。
中庭建筑的火灾危险性有()。
有限责任公司的监事会召开的时间()。
如图3所示,粗细均匀的玻璃细管上端封闭,下端开口,竖直插在大而深的水银槽中,管内封闭有一定质量的空气(可视为理想气体),玻璃细管足够长,管内气柱长4.0cm,管内外水银面高度差为10.0cm,大气压强为76cmHg。现将玻璃管沿竖直方向缓慢移动,当管
并未将税收负担转移给他人的税负转嫁形式是()。
在把握经济全球化趋势与爱国主义的相互关系的问题上,需要着重树立一些观念,其中不包括()
HowcanIeverconcentrateifyou______continually______mewithsillyquestions?(北京大学2008年试题)
Stoppingcigarettesmokinghasbecomeabigproblemforallgovernments.Indemocraticcountries,theeconomicstrengthofthe
最新回复
(
0
)