首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=(x1-x2)2+(x1-x3)2+(x3-x2)2, (Ⅰ)求二次型f的秩; (Ⅱ)求正交变换Q,使二次型f化为标准形.
设二次型f(x1,x2,x3)=(x1-x2)2+(x1-x3)2+(x3-x2)2, (Ⅰ)求二次型f的秩; (Ⅱ)求正交变换Q,使二次型f化为标准形.
admin
2017-10-25
46
问题
设二次型f(x
1
,x
2
,x
3
)=(x
1
-x
2
)
2
+(x
1
-x
3
)
2
+(x
3
-x
2
)
2
,
(Ⅰ)求二次型f的秩;
(Ⅱ)求正交变换Q,使二次型f化为标准形.
选项
答案
(Ⅰ)实对称矩阵A的特征多项式为 |λE-A|=(λ-1)
2
(λ-3), 故A的特征值为λ
1
=λ
2
=1,λ
3
=3.于是,A与对角矩阵[*]相似,又因为A与B相似,故B也与对角矩阵[*]相似,因此,B的特征值为λ
1
=λ
2
=1,λ
3
=3,且R(E-B)=1, 又因为x+5=λ
1
+λ
2
+λ
3
=5,解得x=0. 由 [*] 得y=-2,z=3. (Ⅱ)经计算可知,将实对称矩阵A化为对角矩阵的相似变换矩阵可取为P
1
=[*],即 P
1
-1
AP
1
=[*] 把矩阵B化为对角矩阵的相似变换矩阵可取为P
2
=[*],即 P
2
-1
BP
2
=[*] 取 P=P
1
P
2
-1
=[*] 有 PAP=P
2
P
1
-1
AP
1
P
2
-1
=P
2
[*]P
2
-1
=B.
解析
将A,B分别与同一个对角阵相似,再由相似的传递性,可得A,B相似.
转载请注明原文地址:https://kaotiyun.com/show/Hkr4777K
0
考研数学一
相关试题推荐
设A是m×n阶矩阵,若ATA=0,证明:A=0.
证明:若矩阵A可逆,则其逆矩阵必然唯一.
(1)【证明】由|λE-A|=(λ-1)2(λ+2)=0得λ1=λ2=1,λ3=一2.[*]
设A是三阶实对称矩阵,r(A)=1,A2一3A=0,设(1,1,一1)T为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.
确定常数a,b,c的值,使得当x→0时,ex(1+bx+cx2)=1+ax+o(x3).
用变量代换x=sint将方程化为y关于t的方程,并求微分方程的通解.
一条曲线经过点(2,0),且在切点与y轴之间的切线长为2,求该曲线.
设函数,证明:存在常数A,B,使得当x→0+时,恒有f(x)=e+Ax+Bx2+o(x2),并求常数A,B.
设φ(y)为连续函数.如果在围绕原点的任意一条逐段光滑的正向简单封闭曲线l上,曲线积分其值与具体l无关,为同一常数k.如果φ(y)具有连续的导数,求φ(y)的表达式.
设函数f(x)在区间[a,+∞)内连续,且当x>a时,f’(x)>l>0,其中l为常数.若f(a)<0,则在区间内方程f(x)=0的实根个数为()
随机试题
“永州八记”写于柳宗元被贬为________时,其首篇是《________》。
以下观点何项是《诸病源候论》提出的
男性,30岁。患出血坏死性胰腺炎2周,经治疗,高热不退,持续腹痛。体检:上腹扪及一块物。血淀粉酶1000U/L(Somogyi法),血白细胞14×109/L,中性粒细胞0.85(85%)。最可能的原因是
病理切片中见到绒毛结构的疾病不是流产后不规则流血,子宫内容物组织学检查为成团的滋养细胞,未见绒毛结构,诊断为
目前,各银行还根据个人需求提供个性化的还款方式及还款服务,较为常见的特色还款方式包括()。
日用小杂品的配送在现实生活中,往往都是采用()方法来向用户供货和发送货物的。
Sociologists(社会学家)tellusthatweareheadingforasocietyleisure.Thetrendisunmistakable.Onehundredyearsago,theypo
A、 B、 C、 D、 C确认图片中有孩子们和一位女士在公交车旁排成一队,同时公交车里面的男士正在看着他们。
A、Newspaperoflowprice.B、Newspaperwithattractiveheadline.C、Newspaperwithsportspage.D、Newspaperwithbusinesssection.
A、Theinterpersonalrelationship.B、Thehighpressure.C、Theservantsystem.D、Therapidprogress.B原文提到美国人对时间又爱又十艮,后面具体解释原因,答案依
最新回复
(
0
)