首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)∈C[a,b],在(a,b)内二阶可导. (I)若f(a)=0,f(b)
设f(x)∈C[a,b],在(a,b)内二阶可导. (I)若f(a)=0,f(b)
admin
2017-12-21
94
问题
设f(x)∈C[a,b],在(a,b)内二阶可导.
(I)若f(a)=0,f(b)<0,f’+(a)>0.证明:存在ξ∈(a,b),使得f(ξ)f"(ξ)+f’
2
(ξ)=0.
(Ⅱ)若
证明:存在η∈(a,b),使得f"(η)=f(η).
选项
答案
(I)因为f'
+
(a)>0,所以存在c∈(a,b),使得f(c)>f(a)=0,因为f(c)f(b)<0,所以存在x
0
∈(c,b),使得f(x
0
)=0.因为f(a)=f(x
0
)=0,由罗尔定理,存在x
1
∈(a,x
0
),使得f'(x
1
)=0. 令φ(x)=f(x)f'(x),由φ(a)=φ(x
1
)=0,根据罗尔定理,存在ξ∈(a,x
1
)[*](a,b),使得φ'(ξ)=0.而φ'(x)=f(x)f"(x)+f'
2
(x),所以f(ξ)f"(ξ)+f'
2
(ξ)=0. (Ⅱ)令[*]因为F(a)=F(b)=0,所以由罗尔定理,存在c∈(a,b),使得F'(c)=0,即f(c)=0. 令h(x)=e
x
f(x),由h(a)=h(c)=h(b)=0,根据罗尔定理,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得h'(ξ
1
)=h'(ξ
2
)=0,则h'(x)=e
x
[f(x)+f'(x)],所以f(ξ
1
)+f'(ξ
1
)=0,f(ξ
2
)+f'(ξ
2
)=0. 再令G(x)=e
-x
[f(x)+f'(x)],由G(ξ
1
)=G(ξ
2
)=0,根据罗尔定理,存在η∈(ξ
1
,ξ
2
)[*](a,b),使得G'(η)=0,而G’(x)=e
-x
[f"(x)-f(x)]且e
-x
≠0,所以f"(η)=f(η).
解析
转载请注明原文地址:https://kaotiyun.com/show/I2X4777K
0
考研数学三
相关试题推荐
当x→0时,x—sinxcos2x~cxk,则c=________,k=________.
设函数f(x)连续,下列变上限积分函数中,必为偶函数的是().
设随机向量(X,y)的概率密度f(x,y)满足f(x,y)=f(一x,y),且ρXY存在,则ρXY=()
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
设X1,X2,…,Xn为总体X的一个样本,设EX=μ,DX=σ2,试确定常数C,使一CS2为μ2的无偏估计.
设总体X~N(μ,σ2),X1,X2,X3是来自X的样本,证明:估计量都是μ的无偏估计,并指出它们中哪一个最有效.
曲线的斜渐近线方程为________.
设二维随机变量(X,Y)在区域上服从均匀分布,则(X,Y)的关于X的边缘概率密度fx(x)在点x=e处的值为________.
求曲线的渐近线.
设事件A,B相互独立,P(A)=0.3,且则P(B)=______________.
随机试题
HTML中字体大小的级别有()
抗凝血酶Ⅲ的抗凝血作用主要是()
男女患病比例为20:1的为好发于牙槽嵴、唇、上腭、口底的为
在工程造价信息管理遵循基本原则中,()要求在项目的实施过程中对有关信息的分类进行统一,对信息流程进行规范,从组织上保证信息生产过程的效率。
不属于“假个贷”共性特征的是()。
关于票据保证,下列说法符合《票据法》规定的有()。
已知曲线y=x4+ax2+1在点(一1,α+2)处切线的斜率为8,则a=()
用教育理论成果解决实际问题,以改进实践为目的的研究,属于()
当前目录下有student和conic两个表文件,要求查找同时选修了课程号为“0001”和“0002”的学生姓名,语句为:SELECT姓名FROMstudent,coure;WHEREstudent.学
Manypeoplebecomequietandtensewhentheyfirstmeetsomeonetheydonotknow,orwhentheyfaceanewsituation.Theybecome
最新回复
(
0
)