首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,+∞)内二阶可导,f(0)=一2,f’(0)=1,f’’(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.
设f(x)在[0,+∞)内二阶可导,f(0)=一2,f’(0)=1,f’’(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.
admin
2017-08-31
21
问题
设f(x)在[0,+∞)内二阶可导,f(0)=一2,f
’
(0)=1,f
’’
(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.
选项
答案
因为f
’’
(x)≥0,所以f
’
(x)单调不减,当x>0时,f
’
(x)≥f
’
(0)=1. 当x>0时,f(x)-f(0)=f
’
(ξ)x,从而f(x)≥f(0)+x,因为[*][f(0)+x]=+∞,所以[*]f(x)=+∞. 由f(x)在[0,+∞)上连续,且f(0)=一2<0,[*]f(x)=+∞,则f(x)=0在(0,+∞)内至少有一个根,又由f
’
(x)≥1>0,得方程的根是唯一的.
解析
转载请注明原文地址:https://kaotiyun.com/show/ILr4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 D
设函数f(x)具有2阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上
A是三阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ3,λ2=…2对应的特征向量是ξ3证明:任一三维非零向量β(β≠0)都是A2的特征向量,并求对应的特征值。
设有一高度为h(t)(t为时间)的雪堆在融化过程中,其侧面满足方程z=h(t)-[2(x2+y2)]/[h(t)](设长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(比例系数0.9),问高度为130(厘米)的雪堆全部融化需多少小时?
设,试证明:级数条件收敛.
(2001年试题,十)已知3阶矩阵A与三维向量x,使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x.记P=(x,Ax,A2x),求3阶矩阵B,使A=PBP-1;
设四阶矩阵B=,且矩阵A满足关系式A(E-C-1B)TCT=E,其中E为四阶单位矩阵,C-1表示C的逆矩阵,CT表示C的转置矩阵,将上述关系式化简并求矩阵A.
已知三阶矩阵B为非零向量,且B的每一个列向量都是方程组的解,(I)求λ的值;(Ⅱ)证明|B|=0.
设X1,X2,…,Xn+1是来自正态总体N(μ,σ2)的简单随机样本,记,S2=已知,则k,m的值分别为
随机试题
下列属于中国农业发展银行的主要业务的有()。
企业在记录财务费用时,通常所采用的明细账格式是()。
儿童耐力训练必须是()。
上海新的文化艺术场馆“中华艺术宫”和“上海当代艺术博物馆”是由上海世博会场馆()改建而成的。
从“课程计划预期的结果”转向“课程计划实施的结果”的评价模式是()。
激励理论的分类包括()。
A=BOOKREVIEW1B=BOOKREVIEW2C=BOOKREVIEW3D=BOOKREVIEW4Whichbookreview(s)contain(s)thefollowinginformation?
•Readthefollowingarticleaboutnegotiatingandthequestionsontheoppositepage.•Foreachquestion15-20,markonelette
Scienceisadominantthemeinourculture.Sinceittouchesalmosteveryfacetofourlife,educatedpeopleneedatleastsome
Whatisthelecturemainlyabout?
最新回复
(
0
)