首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,ξ1=(1,2,-2)T,ξ2=(2,1,一1)T,ξ3=(1,1,t)T是非齐次线性方程组Ax=b的解向量,其中b=(1,3,-2)T,则 ( )
设A是3阶矩阵,ξ1=(1,2,-2)T,ξ2=(2,1,一1)T,ξ3=(1,1,t)T是非齐次线性方程组Ax=b的解向量,其中b=(1,3,-2)T,则 ( )
admin
2019-01-24
107
问题
设A是3阶矩阵,ξ
1
=(1,2,-2)
T
,ξ
2
=(2,1,一1)
T
,ξ
3
=(1,1,t)
T
是非齐次线性方程组Ax=b的解向量,其中b=(1,3,-2)
T
,则 ( )
选项
A、t=-l时,必有r(A)=1.
B、t=-1时,必有r(A)=2.
C、t≠-1时,必有r(A)=1.
D、t≠-1时,必有r(A)=2.
答案
C
解析
记B=(ξ
1
,ξ
2
,ξ
3
)=
.
法一 由ξ
1
,ξ
2
,ξ
3
是Ax=b的解向量,t≠-1时,r(B)=3,知ξ
1
,ξ
2
,ξ
3
线性无关,ξ
1
-ξ
2
,ξ
2
-ξ
3
是对应齐次方程组Ax=0的两个线性无关解,故r(A)≤1,但A≠O(若A=O,则Ax=b无解,这和题设条件矛盾),故必有r(A)=1,故应选(C).
法二 Aξ
i
=b(i=1,2,3),故有A(ξ
1
,ξ
2
,ξ
3
)=AB=
=(b,b,b).
当t=-1时,有ξ
1
+ξ
2
=3ξ
3
,而A(ξ
1
+ξ
2
)=Aξ
1
+Aξ
2
=b+b=2b≠A·(3ξ
3
)=3b,所以
t=-1不符合题意,故(A),(B)都不成立.
当t≠-1时,r(B)=3,则B是可逆矩阵,故r(A)=r(AB)=r(b,b,b)=1.
故(C)成立,则(D)必不成立.
转载请注明原文地址:https://kaotiyun.com/show/IvM4777K
0
考研数学一
相关试题推荐
有一大批产品,其验收方案如下,先做第一次检验,从中任取10件,经检验无次品则接收这批产品,次品数大于2,则拒收;否则做第二次检验.其做法是从中再任取5件,仅当5件无次品时接收这批产品,若产品的次品率为10%,求:这批产品经第一次检验能接收的概率.
设总体X~N(μ,σ2),X1,X2,…,Xn+1为总体X的简单随机样本,记服从的分布·
设随机变量X~F(m,n),令P{X>Fα(m,n)}=α(0<α<1),若P(X<k)=α,则k等于().
设X为随机变量,E(X)=μ,D(X)=σ2,则对任意常数C有().
某人的食量是2500卡/天,其中1200卡/天用于基本的新陈代谢,在健身运动中,他所消耗的为16卡/千克/天乘以他的体重,假设以脂肪形式储存的热量百分之百有效,而一千克脂肪含热量10000卡,求该人体重怎样随时间变化.
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
随机向区域D:0<y<(a>0)内扔一点,该点落在半圆内任何区域的概率与该区域的面积成正比,则落点与原点的连线与x轴的夹角小于的概率为________.
设A是三阶矩阵,其三个特征值为,则|4A*+3E|=________.
设S为球面x2+y2+z2=9,取外侧,则zdxdy=__________;
设有命题①若正项级数un满足<1,则级数un收敛。②若正项级数un收敛≤1。③若=1,则级数an和bn同敛散。④若数列{an}收敛,则级数(an+1-an)收敛。以上四个命题中正确的个数为()
随机试题
关于胰液分泌的调节,下列哪项错误
男,6个月。平时多汗,有夜惊,枕秃明显,易激惹,烦躁,睡眠不安。早期诊断最可靠的指标是
若α1,α2,…,αr是向量组α1,α2,…,αr,…,αn的最大无关组,则结论不正确的是:
关于行政许可的表述中,正确的有()。
老李今年40岁,打算。60岁退休,考虑到通货膨胀的因素,退休后每年生活费大约需要10万元(岁初从退休基金中提取)。老李预计可以活到85岁,所以拿出10万元储蓄作为退休基金的启动资金(40岁初),并打算以后每年年末投入一笔固定的资金。老李在退休前采取较为积
据报载,英国有调查机构曾以《世界上谁最快乐》为题做过一次调查,统计数字显示,排在前几位的分别是以下四种人:刚发表长篇小说的作家;刚生下小孩的女人;刚顺利做完一个大手术的医生;玩沙子堆砌成功的小孩。上述几种人之所以最快乐的原因在于( )。
下列关于供给侧改革的说法错误的是()。
机关对晋升领导职务的公务员应当在任职前或者任职后一年内进行()培训。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
Whenaninventionismade,theinventorhasthreepossiblecoursesofactionopentohim:hecangivetheinventiontotheworld
最新回复
(
0
)