首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y)=x3+y3-3x2-3y2,求f(x,y)的极值及其在x2+y2≤16上的最大值.
设f(x,y)=x3+y3-3x2-3y2,求f(x,y)的极值及其在x2+y2≤16上的最大值.
admin
2019-08-27
43
问题
设f(x,y)=x
3
+y
3
-3x
2
-3y
2
,求f(x,y)的极值及其在x
2
+y
2
≤16上的最大值.
选项
答案
[*] 即共有4个点(0,0),(0,2),(2,0),(2,2). [*] 在点(0,0)处,B
2
-AC=0-(-6)×(-6)=-36<0且A=-6<0,所以点(0,0)是一个极大值 点且极大值为f(0,0)=0; 同理,f(2,2)=-8是一个极小值;而f(0,2)与f(2,0)不是极值. 由上面讨论可知,f(x,y)在闭域D上的最大值,若在D内达到,则必是在(0,0)点取得,但也可能在D的边界上,故建立拉格朗日函数,令 [*] 则由 [*] 解得x=0,y=4;x=4,y=0;[*]. 因此,f(x,y)在D上的最大值为 [*]
解析
【思路探索】先求出函数f(x,y)在
内的极值可疑点(x
i
,y
i
)(i=1,2,…,m);再利用极值充分判别法判断每个可疑点是否为极值点,若是极值点,求出对应的极值;最后由拉格朗日乘数法求得f(x,y)在D的边界上的可疑极值,将以上所得函数值进行比较便可得结果.
转载请注明原文地址:https://kaotiyun.com/show/J2A4777K
0
考研数学二
相关试题推荐
设F(X)在x=x0处连续,则f(x0)是f(x0)为极值的()
已知n维向量组α1,α2,α3,α4是线性方程组Ax=0的基础解系,则向量组aα1﹢bα4,aα2﹢bα3,aα3﹢bα2,aα4﹢bα1也是Ax=0的基础解系的充分必要条件是()
设平面区域D={(x,y)|(x-1)2﹢(y-1)2≤2},I1=(x﹢y)dσ,I21=(1﹢x﹢y)dσ.则正确的是()
设矩阵,行列式|A|=一1,又A*的属于特征值λ0的一个特征向量为α=(一1,一1,1)T,求a,b,c及λ0的值。
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。利用上题的结果判断矩阵B一CTA—1C是否为正定矩阵,并证明结论。
设y=y(x)由x2y2+y=1(y>0)确定,求函数y=y(x)的极值.
求极限
设A为三阶方阵,A的每行元素之和为5,AX=0的通解为k1+k2,设β=,求Aβ.
设平面区域D由曲线围成,则等于()
求极限
随机试题
某企业设备的运行周期为253小时,在其运行期间共运行了236小时,其中发生了5次故障,故障时间分别为3.4小时,3小时,3.8小时,2.6小时,4.2小时。试求该设备的故障率。
在需要层次理论中,地位属于()
直到不久前,科学家们才排除了月球上存在生物的可能性。
某成年男性因全身肌痛、面部水肿、视力障碍来医院就诊。自述1个月前曾参加过一个大型会议,会议期间曾聚餐,与会者中已有数十人出现全身肌痛等症状。最可能的诊断是
下列有关抗菌药作用机制的叙述哪项是错误的
建设项目管理的类型可以按( )几方面划分。
国库是办理预算收入的收纳、划分、留解和库款支拨的专门机构,也称中央国库。()
相对于其他职业生涯发展阶段来说,员工在()阶段更加注重自己的经济收入。
某投资者计划2019年年初购置一处现行市场价格为1000万元的房产。由于资金不足,房主提出了四种延期付款方案供其选择。方案一:2020年至2029年,每年年初付款155万元。方案二:2024年至2030年,每年年初付款280万元。方案三
卢梭在《论人类不平等的起源和基础》中说道:“我认为,在人类的一切知识中,最有用但也最不完善的知识就是关于人的知识。”马克思的唯物史观则破解了“人是什么”之谜,指出人的本质在其现实性上是()。
最新回复
(
0
)