首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设X1,X2,…,Xn,是同分布的随机变量,且EX1=0,DX1=1.不失一般性地设X1为连续型随机变量.证明:对任意的常数λ>0,有.
设X1,X2,…,Xn,是同分布的随机变量,且EX1=0,DX1=1.不失一般性地设X1为连续型随机变量.证明:对任意的常数λ>0,有.
admin
2018-08-30
83
问题
设X
1
,X
2
,…,X
n
,是同分布的随机变量,且EX
1
=0,DX
1
=1.不失一般性地设X
1
为连续型随机变量.证明:对任意的常数λ>0,有
.
选项
答案
由已知可知:E(X
i
2
)=DX
i
+(EX
i
)
2
=1,i=1,…,n.设(X
1
,…,X
n
)的概率密度为f(χ
1
,χ
2
,…,χ
n
),则 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/JMg4777K
0
考研数学一
相关试题推荐
令A=[*],方程组(I)可写为AX=b,方程组(II)、(III)可分别写为ATY=0及[*]=0.若方程组(I)有解,则r(A)=r(A:b),从而r(AT)=[*],又因为(Ⅲ)的解一定为(Ⅱ)的解,所以(Ⅱ)与(III)同解;反之,若(Ⅱ)与
计算I=
设α1,α2,…,αt为AX=0的一个基础解系,P不是AX=0的解,证明:β,β+α1,β+α2,…,β+αt线性无关.
设f(x)在[0,1]连续可导,且f(0)=0.证明:存在ξ∈[0,1],使得f’(ξ)=2∫01f(x)dx.
A,B,C三个随机事件必相互独立,如果它们满足条件
设随机变量X的概率密度为f(x),已知D(X)=1,而随机变量Y的概率密度为f(-y),且ρXY=,记Z=X+Y,求E(Z),D(Z).
已知随机变量X的概率密度(Ⅰ)求分布函数F(x);(Ⅱ)若令Y=F(X),求Y的分布函数FY(y).
设X,Y相互独立,都在(0,1)内服从均匀分布,现有区域D0={(x,y)|0≤x≤1,x2≤y≤1)(见下图).(1)若对(X,Y)进行5次独立观察,求至少有一次落在D0内的概率;(2)若要求至少有一次落在D0内的概率不小于0.999,至少要
已知(X,Y)在以点(0,0),(1,-1),(1,1)为顶点的三角形区域上服从均匀分布。(Ⅰ)求(X,Y)的联合密度函数f(x,y);(Ⅱ)求边缘密度函数fX(x),fY(y)及条件密度函数fX(x|y),fY|X(y|x);并问X与Y是否独立;(
已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品。从甲箱中任取3件产品放入乙箱后,求:(Ⅰ)乙箱中次品件数的数学期望;(Ⅱ)从乙箱中任取一件产品是次品的概率。
随机试题
房颤听诊的特点()。
下列所述药物功效哪项是错误的
在早期周围型肺癌中,“小泡征”常见于
患者,女性,25岁。主诉白带量多伴外阴痒。检查见外阴皮肤有抓痕,窥器检查后穹隆处有稀薄的白色泡沫分泌物,阴道黏膜有多个散在的红色斑点。根据上述症状、体征。初步诊断为
牛蒡子与薄荷共有的功效是()。
建设工程的项目信息门户是基于互联网技术的重要管理工具。可以作为一个建设工程服务的项目信息门户主持者的是()。
财产清查的种类有许多分类方法,主要包括()。
通过影响国内物价水平、影响短期资本流动而间接地对利率产生影响的是()。
下列关于生物体内有机物的叙述正确的是()。
求下列极限:
最新回复
(
0
)