首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
方程y(4)一2y’’’一3y’’=e-3x一2e-x+x的特解形式(其中a,b,c,d为常数)是 ( )
方程y(4)一2y’’’一3y’’=e-3x一2e-x+x的特解形式(其中a,b,c,d为常数)是 ( )
admin
2015-08-17
50
问题
方程y
(4)
一2y’’’一3y’’=e
-3x
一2e
-x
+x的特解形式(其中a,b,c,d为常数)是 ( )
选项
A、y’’一2y’+y=e
2x
B、y’’一y’一2y=xe
x
C、y’’一y’一2y=e
x
一2xe
x
D、y’’一y=e
2x
答案
C
解析
特征方程r
2
(r
2
—2r一3)=0,特征根为r
1
=3,r
2
=一1,r
3
=r
4
=0,对f
1
=e
-3x
,λ
1
=一3非特征根,λ
1
*
=-3;对f
2
=一2e
-x
,λ
2
=一1是特征根,y
2
*
=bxe
-x
;对f
3
=x,λ
3
=0是二重特征根,y
3
*
=x
2
(cx+d),所以特解y
*
=y
1
*
+y
2
*
+y
3
*
=ae
-3x
+k+bxe
-x
+cx
3
+dx
2
.
转载请注明原文地址:https://kaotiyun.com/show/JQw4777K
0
考研数学一
相关试题推荐
求方程y"+2my’+n2y=0的通解;又设y=y(x)是满足初始条件y(0)=a,y’(0)=b的特解,求∫0+∞y(x)dx,其中m>n>0,a,b为常数.
f(χ)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f′(0)=0.证明:存在ξ∈(-1,1),使得f″′(ξ)=3.
求y=f(x)=的渐近线.
设向量组α1,α2,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1,讨论向量组β1,β2,βs的线性相关性.
Y服从参数X的指数分布,而X是服从[1,2]上的均匀分布的随机变量.求已知Y=y时X的条件密度函数;
求一个以y1=tet,y2=sin2t为其两个特解的四阶常系数齐次线性微分方程,并求其通解.
求正常数a、b,使
早晨开始下雪整天不停,中午一辆扫雪车开始扫雪,每小时扫雪体积为常数,到下午2点扫雪2km,到下午4点又扫雪1km,问降雪是什么时候开始的?
设3阶矩阵A有3个特征向量η1=(1,2,2)T,η2=(2,-2,1)T,η3=(-2,-1,2)T,它们的特征值依次为1,2,3,求A.
随机试题
某一行业被入侵的威胁大小主要取决于行业______。
关于子宫破裂,下列正确的是( )。
宫颈黏液最丰富,伸展性最大,羊齿状结晶最典型,出现在正常月经的
下列关于科创板上市公刮表决权差异安排的表述,不正确的是()。
该企业( )。王某的朋友李某( )。
从培训内容上看,()的培训有赖于在指导者的指导下进行练习或实践。
Tenyearshadelapsed.Ifoundshehad______.
Californiaseemstobethehomeofthehomelesssincemanyareoftenobservedtrampingalongrailroadtracksandthroughthedow
Westernjurieshavetraditionallyfoundeyewitnesstestimonytobethemostconvincingevidenceincriminaltrials.Seeingisbe
A、Similarresearchesinothercountries.B、Theimpactofsocialnetworks.C、Thedegreeofmodernization.D、Thequalityofpeople
最新回复
(
0
)