首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知矩阵A=能相似对角化,求正交变换化二次型χTAχ为标准形.
已知矩阵A=能相似对角化,求正交变换化二次型χTAχ为标准形.
admin
2018-06-12
69
问题
已知矩阵A=
能相似对角化,求正交变换化二次型χ
T
Aχ为标准形.
选项
答案
由A的特征多项式 |λE-A|=[*]=(λ-6)
2
(λ+2), 知矩阵A的特征值是λ
1
=λ
2
=6,λ
3
=-2.由于矩阵A可以相似对角化,故λ=6必有2个线性无关的特征向量,那么由 r(6E-A)=[*]=1, 得知a=0.因此χ
T
Aχ=2χ
1
2
+2χ
2
2
+6χ
3
2
+10χ
1
χ
2
. 二次型的矩阵为A
1
=[*].由 |λE-A
1
|=[*]=(λ-6)(λ-7)(λ+3), 知二次型χ
T
Aχ=χ
T
A
1
χ的特征值是6,7,-3. 对λ=6,由(6E-A
1
)χ=0得α
1
=(0,0,1)
T
. 对λ=7,由(7E-A
1
)χ=0得α
2
=(1,1,0)
T
. 对λ=-3,由(-3E-A
1
)χ=0得α
3
=(1,-1,0)
T
. 不同特征值的特征向量已正交,故只需单位化,有 [*] 那么,令P=(γ
1
,γ
2
,γ
3
) [*] 则经χ=Py,有χ
T
Aχ=6y
1
2
+7y
2
2
-3y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/JTg4777K
0
考研数学一
相关试题推荐
设A,B均为n阶可逆矩阵,则下列运算正确的是()
已知线性方程组有无穷多解,而A是3阶矩阵,且分别是A关于特征值1,-1,0的三个特征向量,求矩阵A.
设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)χ=0()
设矩阵Am×n的秩为r(A)=m<n,Im为m阶单位矩阵,则下述结论中正确的是()
已知A=,求可逆矩阵P,使P-1AP=A.
设A=,B是3阶非零矩阵,且AB=O,a=_______.
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=O,则()
设n阶矩阵A与B等价,则必有()
随机试题
35公斤小儿的体表面积为
下列哪种情况不属于土地增值税的征收范围?()
供应链的特点不包括【】
与相应抗原结合后,能与Clq结合活化补体的Ig是
A.细菌性痢疾B.Crohn病C.溃疡性结肠炎D.阿米巴肠炎E.肠结核病变为非干酪性肉芽肿可见于
既能涩肠止泻,又能安蛔止痛的药物是()。
糖皮激素治疗顽固哮喘的机制错误的是
长期聘用制度保住了大学里专职人员的工作,其最好的理由是这种制度允许老资格的教职员工雇用比他们更聪明的教员,而同时仍能保持其稳定位置,除非他们自己卷入道德卑鄙——一个在目前环境下几乎无法定义的概念——的行为中,否则那些年轻的甭想能翻过来把他们解雇掉。然而这一
下列程序的运行结果是()。#inc1udevoidsub(int*s,int*y){staticintm=4;*y=s[0];m++;}voidmain(){
Allthewallsinthebuildinghadthesamelayout.
最新回复
(
0
)