首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n元线性方程组Ax=b,其中 (1)证明行列式|A|=(n+1)an; (2)当a为何值时,该方程组有唯一解,并求x1; (3)当a为何值时,该方程组有无穷多解,并求通解.
设n元线性方程组Ax=b,其中 (1)证明行列式|A|=(n+1)an; (2)当a为何值时,该方程组有唯一解,并求x1; (3)当a为何值时,该方程组有无穷多解,并求通解.
admin
2019-03-21
100
问题
设n元线性方程组Ax=b,其中
(1)证明行列式|A|=(n+1)a
n
;
(2)当a为何值时,该方程组有唯一解,并求x
1
;
(3)当a为何值时,该方程组有无穷多解,并求通解.
选项
答案
(1)方法一 数学归纳法 当n=1时。 |A|=|2n|=2a,结论成立; 当n=2时, |A|=[*]=3a
2
,结论成立; 假设结论对n=2,n-1阶行列式成立,即|A|
n-2
=(n-1)a
n-2
,|A|
n-1
=na
n-1
. 将|A|
n
按第一行展开有 |A|
n
=2a|A|
n-1
-a
2
|A|
n-2
=2a.na
n-1
-a
2
.(n—1)a
n-2
=(”+1)a
n
. 即结论对n阶行列式仍成立.因此由数学归纳原理知,对任何正整数n,有 |A|=(n+1)a
n
. 方法二 化三角形 [*] =… [*] =(n+1)a
n
. (2)当|A|=(n+1)a
n
≠0,即a≠0时,由Cramer法则得[*],其中 [*]=|A|
n-1
=na
n-1
, 故[*] (3)当(n+1)a
n
=0,即a=0时,方程组有无穷多解,此时增广矩阵为 [*] 易得特解为[*],对应的齐次方程组的基础解系只有一个解向量,且可取为[*]故Ax=b的通解为:[*],k为任意常数.
解析
对于n阶行列式的计算,可用性质化三角形行列式,或按行(列)展开递推计算,也可用数学归纳法.
转载请注明原文地址:https://kaotiyun.com/show/JUV4777K
0
考研数学二
相关试题推荐
求下列方程的通解:(Ⅰ)(x-2)dy=[y+2(x-2)3]dx;(Ⅱ)y2dx=(x+y2)dy;(Ⅲ)(3y-7x)dx+(7y-3x)dy=0.
设函数y1(x),y2(x),y3(x)线性无关,而且都是非齐次线性方程(6.2)的解,C1,C2为任意常数,则该非齐次方程的通解是
设f(x)在[a,b]有二阶连续导数,M=|f"(x)|,证明:
下列函数中在[-2,3]不存在原函数的是
已知y1*=xex+e2x,y2*=xex+e-x),y3*=xex+e2x-e-x是某二阶线性常系数非齐次方程的三个特解.试求其通解及该微分方程.
要设计一形状为旋转体水泥桥墩,桥墩高为h,上底面直径为2a,要求桥墩在任意水平截面上所受上部桥墩的平均压强为常数p.设水泥的比重为ρ,试求桥墩的形状.
函数F(x)=∫xx+2πf(t)dt,其中f(t)=(1+sin2t)cos2t,则F(x)
证明函数f(x)=在(0,+∞)单调下降.
若函数f(x,y)对任意正实数t,满足f(tx,ty)=tnf(x,y),(7.12)称f(x,y)为n次齐次函数.设f(x,y)是可微函数,证明:f(x,y)为n次齐次函数
随机试题
男性,56岁。大便次数增多2年,4~6次/d,低热,厌食,消瘦,无腹痛,抗生素无明显疗效。甲状腺结节性肿大,心率96次/min,Bp150/70mmHg,肝可触及。大便潜血阴性,ALT56U/L,甲状腺摄131I率:3/小时35%,24/小时52%。哪
由流通中现金和商业银行等金融机构在中央银行的存款准备金构成,政府金融当局能够直接控制的货币是()。
某日,一投资者购买合约价值为1000000美元的3个月期短期国债,成交指数为92,则该投资者的购买价格为()美元。
下列属于商品的兴趣集中点的有()。
商业设计也许越来越被赋予艺术创作和欣赏的价值,但它根本的出发点和落脚点永远是把产品的特质用艺术的方式展现给顾客。如果一项商业设计不能让人联想到产品并对之产生好感,即使它再精美、再具创意,也不能算是成功的设计。说到底,广告在创意之外最重要的还是关联性,我们不
实验法主要包括()
要使两个单选按钮属于同一个框架,下面三种操作方法中正确的是()。①先画一个框架,再在框架中画两个单选按钮②先画一个框架,再在框架外画两个单选按钮,然后把单选按钮拖到框架中③先画两个单选按钮,再画框架将单选按钮框起来
Whatdoestheword"elusive"inthefirstsentencemean?Whatistheauthor’sattitudetowardseffortsinsolvingenvironmental
•Lookatthetablebelow.Itshowsthetrendsintotalunemployedfrom1999to2006.•Whichyeardoeseachsentence(11-15)de
MAGICINGREDIENTSFoodstylistRuthMacDonaldtellsussomeofthe"secrets"ofherprofession.1.Peoplealwaysaskme;"W
最新回复
(
0
)