设函数f(x)在区间[0,a]上单调增加并有连续的导数,且f(0)=0,f(a)=b,求证: ∫0af(x)dx+∫0bg(x)dx=ab, 其中g(x)是f(x)的反函数.

admin2019-06-28  26

问题 设函数f(x)在区间[0,a]上单调增加并有连续的导数,且f(0)=0,f(a)=b,求证:
0af(x)dx+∫0bg(x)dx=ab,
其中g(x)是f(x)的反函数.

选项

答案令F(a)=∫0af(x)dx+∫0f(a)g(x)dx-af(a),对a求导得 F’(a)=f(a)+g[f(a)]f’(a)-af’(a)-f(a), 由题设g(x)是f(x)的反函数知g[f(a)]=a,故F’(a)=0,从而F(a)为常数.又F(0)=0,故F(a)=0,即原等式成立.

解析 即证对a有函数恒等式∫0af(x)dx+∫0f(a)g(x)dx=af(a)成立.
转载请注明原文地址:https://kaotiyun.com/show/JaV4777K
0

最新回复(0)