首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次方程组(I) 有一个基础解系β1=(b11,b12,…,b1×2n)T,β2(b11,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T. 证明A的行向量组是齐次方程组(Ⅱ) 的通解.
设齐次方程组(I) 有一个基础解系β1=(b11,b12,…,b1×2n)T,β2(b11,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T. 证明A的行向量组是齐次方程组(Ⅱ) 的通解.
admin
2017-10-21
25
问题
设齐次方程组(I)
有一个基础解系β
1
=(b
11
,b
12
,…,b
1×2n
)
T
,β
2
(b
11
,b
22
,…,b
2×2n
)
T
,…,β
n
=(b
n1
,b
n2
,…,b
n×2n
)
T
.
证明A的行向量组是齐次方程组(Ⅱ)
的通解.
选项
答案
分别记A和B为(I)和(Ⅱ)的系数矩阵. (I)的未知量有2n个,它的基础解系含有n个解,则r(A)=n,即A的行向量组α
1
,α
2
,…,α
n
线性无关. 由于β
1
,…,β
n
都是(I)的解,有AB
T
=(Aβ
1
,Aβ
2
,…,Aβ
n
)=0,转置得BA
T
=0,即Bα
i
T
=0,i=1,…,n.于是,α
1
,α
2
,…,α
n
是(Ⅱ)的n个线性无关的解.又因为r(B)=n,(Ⅱ)也有2n个未知量,2n—r(B)=n.所以α
1
,α
2
,…,α
n
是(Ⅱ)的一个基础解系.从而(Ⅱ)的通解为c
1
α
1
+c
2
α
2
+…+c
n
α
n
,c
1
,c
2
,…,c
n
可取任意数.
解析
转载请注明原文地址:https://kaotiyun.com/show/JdH4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),且f(a)=0.证明:存在ξ∈(a,b),使得.
设f(x)=x3+ax2+bx在x=1处有极小值一2,则().
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求.
设,则α1,α2,α3经过施密特正交规范化后的向量组为
设n阶矩阵A与对角矩阵合同,则A是().
设A,B皆为n阶矩阵,则下列结论正确的是().
判断级数的敛散性.
判断级数的敛散性.
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设,求方程组AX=b的通解.
设随机变量X1,X2,X3,X4相互独立且同分布,P(Xi=0)=0.6,P(Xi=1)=0.4(i=1,2,3,4)。求行列式的概率分布。
随机试题
交易性金融资产和可供出售金融资产的特点有()
对高温作业环境的叙述,哪项是错误的
有线电视传输节目的总源头是()。
甲公司2×17年1月5日以吸收合并的方式取得乙公司全部净资产。其中有一批存货无法确定主要市场,可以在A市场出售,也可以在B市场出售。若在A市场出售,销售价格为100万元,交易费用为5万元,运输费用为4万元;若在B市场出售,销售价格为110万元,交易费用为8
Itwasacolddarkwinter’snight.ItwasgettinglateandIwastiredsoIwenttobed.Atabouttwointhemorningmypho
下列选项中,属于意定之债的是()。
Itisnotoftenrealizedthatwomen【C1】______ahighplaceinsouthernEuropeansocietiesinthe10thand11thcenturies.Asa【C2
Notsolongago,itwasthestuffofnightmares:youpickupthelandlinetelephoneandthere’snodialingtone.Nothing.Theph
Undergroundticketsareavailableatallundergroundstations.Ticketpricesfortheundergroundvaryaccordingtothedistance
Buildingafterbuildingunderwater.【B1】______inshelters.Thousandsofothersunsurewheretogo.【B2】______forhelp.Anarchy.B
最新回复
(
0
)