首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x0的某一邻域内存在连续的三阶导数,且f’(x0)=f"(x0)=0而f"’(x0)≠0,试证(x0,f(x0))是曲线的拐点,而x0不是f(x)的极值点。
设f(x)在x0的某一邻域内存在连续的三阶导数,且f’(x0)=f"(x0)=0而f"’(x0)≠0,试证(x0,f(x0))是曲线的拐点,而x0不是f(x)的极值点。
admin
2022-09-05
65
问题
设f(x)在x
0
的某一邻域内存在连续的三阶导数,且f’(x
0
)=f"(x
0
)=0而f"’(x
0
)≠0,试证(x
0
,f(x
0
))是曲线的拐点,而x
0
不是f(x)的极值点。
选项
答案
不妨设 [*] 所以根据保号性存在x
0
的某邻域,使得[*],即x>x
0
时,f"(x)>0;x<x
0
时,f"(x)<0. 从而(x
0
,f(x
0
))是曲线的拐点,而 f(x)=f(x
0
)+f’(x
0
)(x-x
0
)+[*](x-x
0
)
2
+[*](x-x
0
)
3
故f(x)-f(x
0
)=[*](x-x
0
)
3
,即x>x
0
时,f(x)>f(x
0
);x<x
0
时,f(x)<f(x
0
),故x
0
不是f(x)的极值点。
解析
转载请注明原文地址:https://kaotiyun.com/show/JfR4777K
0
考研数学三
相关试题推荐
求
计算
设f(x)连续,证明:∫0x[∫0tf(u)du]dt=∫0xf(t)(x-t)dt.
设对一切的x,有f(x+1)=2f(x),且当x∈[0,1]时f(x)=x(x2-1),讨论函数f(x)在x=0处的可导性.
设三阶矩阵A的特征值为λ1=-1,λ2=-,λ3=,其对应的特征向量为a1,a2,a3,令P=(2a3,-3a1,-a2),则P-1(A-1+2E)P=_____________.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,|f(x)dx=0.证明:存在ξ∈(a,b),使得f"(ξ)=f(ξ);
证明:xaxinxdx·a-cosxdx≥,其中a>0为常数.
设z=f(x,y)二阶可偏导,=2,且f(x,0)=1,f’y(x,0)=x,则f(x,y)=_____________.
一条生产线的产品成箱包装,每箱的重量是随机的.假设平均重50千克,标准差为5千克.如果用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保证不超载的概率大于0.977.(Φ(2)=0.977.)
证明推广的积分中值定理:设F(x)与G(x)都是区间[a,b]上的连续函数,且G(x)≥0,G(x)≠0,则至少存在一点ξ∈[a,b]使得∫abF(x)G(x)dx=F(ξ)∫abG(x)dx.
随机试题
对慢性呼衰患者采取下列哪些措施易致呼吸道通畅()
对输血的病情观察,不包括
患者,男,28岁。上腹部灼痛1年,饥饿时加重,进食后可缓解,伴泛酸。查体:上腹部稍偏右有压痛。应首先考虑的是()
选项所列行为中构成侵犯注册商标专用权的是?
下列选项不属于空气的减湿处理方法的是()。
()是指债务人或者第三人不转移对法定财产的占有,将该财产作为债权的担保。
下列关于企业现金清查的说法,正确的有()。
论述陶行知的“教学做合一”的思想。
Giventheadvantagesofelectronicmoney,youmightthinkthatwewouldmovequicklytothecashlesssocietyinwhichallpaymen
(1)Humanmigration:thetermisvague.Whatpeopleusuallythinkofisthepermanentmovementofpeoplefromonehometoanother
最新回复
(
0
)