首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,α1为AX=0的一个非零解,向量组α2,…,αs满足Ai-1αi=α1(i=2,3,…,s).证明α1,α2,…,αs线性无关.
设A为n阶矩阵,α1为AX=0的一个非零解,向量组α2,…,αs满足Ai-1αi=α1(i=2,3,…,s).证明α1,α2,…,αs线性无关.
admin
2018-11-23
77
问题
设A为n阶矩阵,α
1
为AX=0的一个非零解,向量组α
2
,…,α
s
满足A
i-1
α
i
=α
1
(i=2,3,…,s).证明α
1
,α
2
,…,α
s
线性无关.
选项
答案
设c
1
α
1
+c
2
α
2
+…+c
s
α
s
=0(1),要推出系数c
i
都为0. 条件说明A
i
α
i
=Aα
1
=0 (i=1,2,3,…,s). 用A
s-1
乘(1)的两边,得c
s
α
1
=0,则c
s
=0. 再用A
s-2
乘(1)的两边,得c
s-1
α
1
=0,则c
s-1
=0. 这样可逐个得到每个系数都为0.
解析
转载请注明原文地址:https://kaotiyun.com/show/K6M4777K
0
考研数学一
相关试题推荐
设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是
设f(x)在区间[0,1]上连续,在(0,1)内可导,且满足证明:存在ξ∈(0,1),使得f’(ξ)=2ξf(ξ).
证明:若A为n阶方阵,则有|A*|=|(一A)*|(n≥2).
设f(x)在x=0处二阶导数连续,且试求f(0),f’(0),f’’(0)以及极限
设二维随机变量(X,Y)的概率密度为求:(Ⅰ)(X,Y)的边缘概率密度fX(x)fY(y);(Ⅱ)z=2X一Y的概率密度fZ(z).
若在区间(0,1)上随机地取两个数u,ν,则关于x的一元二次方程x2一2νx+u=0有实根的概率为________.
设向量组α1=(2,1,1,1),α2=(2,1,a,a),α3=(3,2,1,a),α4=(4,3,2,1)线性相关,且a≠1,a=_____.
已知α1,α2均为2维向量,矩阵A=[2α1+α2,α1一α2],β=[α1,α2],若行列式|A|=6,则|B|=____
(15年)n阶行列式
设A,B为3阶相似非零矩阵,矩阵A=(aij)满足aij=Aij(i,j=1,2,3),Aij为aij的代数余子式,矩阵B满足|E+2B|=|E+3B|=0,行列式|AB-A*+B-E|=______.
随机试题
即使结核菌对其已产生耐药,但复治时仍可选用的药物是()
哪个是涉及人体实验的伦理学文献
下面对员工福利的特征描述错误的选项是()。
导游服务集体成员之间由于职责不同,所代表企业不同,扮演的角色也有差异,因而会产生意见分歧。()
“我们无法改变各个国家文化上的差异,但可以通过文化交流了解并理解这样的差异,从而增进对不同国家文化的认同”。这一观点的合理性体现在()。①承认世界文化的统一性②主张消除民族文化的差异③尊重世界文化的多样性④主张不同文化的平等交流与沟通
学习是指由经验引起的个体相对持久的变化。()
人体:肝脏:解毒
下列关于生活常识的说法,正确的是:
先天性双侧唇裂手术修复最适宜的时间是()。
有的老师讲课内容很丰富,但是就是东一句西一句的。
最新回复
(
0
)