首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1996年)设f(x)有连续导数,f(0)=0,f’(0)≠0,且当x→0时,f’(x)与xk是同阶无穷小,则k等于( )
(1996年)设f(x)有连续导数,f(0)=0,f’(0)≠0,且当x→0时,f’(x)与xk是同阶无穷小,则k等于( )
admin
2018-07-01
54
问题
(1996年)设f(x)有连续导数,f(0)=0,f’(0)≠0,
且当x→0时,f’(x)与x
k
是同阶无穷小,则k等于( )
选项
A、1.
B、2.
C、3.
D、4.
答案
C
解析
解1
由于
而上式右端极限存在且为非零常数,则k=3,所以应选(C).
解2 由原题知当x→0时,F’(x)与x
k
为同阶无穷小,换句话说,当x→0时,F’(x)是x的k阶无穷小,本题要决定k,即要决定当x→0时,F’(x)是x的几阶无穷小,如果能决定F(x)是x的几阶无穷小,降一阶就应是F’(x)的阶数.下面来决定F(x)是x的几阶无穷小.由于
f(t)=f(0)+f’(0)t+o(t)=f’(0)t+o(t)
由于上式中第二项o(t)是高阶:无穷小,略去它不影响F(x)的阶数,则x→0时,
与F(x)的阶数相同,而
显然它是x的四阶无穷小,则x→0时F(x)是x的四阶无穷小,F’(x)应是x的三阶无穷小,故应选(C).
△解3 与解2前面的分析一样,本题只要能确定F(x)是x的几阶无穷小,问题就得到解决.在F(x)=
的表达式中有一个一般函数f(t),这样一个一般的f(x)它都能决定F(x)的阶数,那么取一个具体的f(t),比如取f(t)=t,当然同样也可以决定结果.将f(t)=t代入
得
显然它是x的四阶无穷小,从而F’(x)是x的三阶无穷小,所以应选(C).
转载请注明原文地址:https://kaotiyun.com/show/KCg4777K
0
考研数学一
相关试题推荐
求函数的导数.
设B是秩为2的5×4矩阵,α1=[1,1,2,3]T,α2=[-1,1,4,-1]T,α3=[5,-1,-8,9]T是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基.
设两曲线y=f(x)与在点(0,0)处有相同的切线,则=________
设φ(y)为连续函数.如果在围绕原点的任意一条逐段光滑的正向简单封闭曲线l上,曲线积分其值与具体l无关,为同一常数k.证明:在任意一个不含原点在其内的单连通区域D0上,曲线积分与具体的C无关而仅与点A,B有关.
求(a为常数,0
设函数f(x)有连续导数,F(x)=,证明:F(2a)-2F(a)=f2(a)-f(0)f(2a).
设函数φ(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分的值恒为同一常数.求函数φ(y)的表达式.
设函数Q(x,y)在xOy平面上具有一阶连续偏导数,曲线积分∫L2xydx+Q(x,y)dy与路径无关,并且对任意t恒有求Q(x,y).
设有直线则L1与L2的夹角为
设f(x)为连续函数,计算+yf(x2+y2)]dxdy,其中D是由y=x2,y=1,x=一1围成的区域.
随机试题
A、鳞癌B、腺癌C、腺鳞癌D、小细胞癌E、大细胞癌早期出现纵隔淋巴结广泛转移的肺癌类型是()
某医疗机构发现了甲类传染病,此时应及时采取的措施中不包括
男性,车祸后半小时,血压90/56mmHg,心率120次/分,下腹膨隆,不能自排小便,尿道口有少量流血,X线提示骨盆骨折,尿道造影提示后尿道断裂,最佳处理是
对商标权人的下列行为,商标局可以撤销其注册商标的是()。
政府财政部门对要求追加预算支出、减少预算收入的事项应当严格审核,对需要动用预备费的。必须经上级政府财政部门批准。()
广义的信贷期限通常分为()。
期初年金现值与期末年金现值的换算关系是()。
欧洲俱乐部冠军联赛,共15个俱乐部球队参加。比赛时,先分成两个小组,第一组8个球队,第二组7个球队。各组进行主客场制,然后再由各组的前两名共4个队进行单循环赛,决出冠亚军。则该届欧冠联赛共需比赛多少场?
旋律
KarlVonLinne(orLinnaeus,asheiswidelyknown)wasaSwedishbiologistwhodevisedthesystemofLatinisedscientificnames
最新回复
(
0
)