首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anχ=0和(Ⅱ)An+1χ=0,现有四个命题 (1)(Ⅰ)的解必是(Ⅱ)的解; (2)(Ⅱ)的解必是(Ⅰ)的解; (3)(Ⅰ)的解不是(Ⅱ)的解; (4)(Ⅱ)的解不是(Ⅰ)的解.
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anχ=0和(Ⅱ)An+1χ=0,现有四个命题 (1)(Ⅰ)的解必是(Ⅱ)的解; (2)(Ⅱ)的解必是(Ⅰ)的解; (3)(Ⅰ)的解不是(Ⅱ)的解; (4)(Ⅱ)的解不是(Ⅰ)的解.
admin
2020-03-02
46
问题
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)A
n
χ=0和(Ⅱ)A
n+1
χ=0,现有四个命题
(1)(Ⅰ)的解必是(Ⅱ)的解;
(2)(Ⅱ)的解必是(Ⅰ)的解;
(3)(Ⅰ)的解不是(Ⅱ)的解;
(4)(Ⅱ)的解不是(Ⅰ)的解.
以上命题中正确的是( )
选项
A、(1)(2)
B、(1)(4)
C、(3)(4)
D、(2)(3)
答案
A
解析
若A
n
α=0,则A
n+1
α=A(A
n
α)=A0=0,即若α是(Ⅰ)的解,则α必是(Ⅱ)的解,可见命题(1)正确.
如果A
n+1
α=0,而A
n
α≠0,那么对于向量组α,A
1
α,A
2
α,…,A
n
α,一方面有:
若kα+k
1
A
1
α+k
2
A
2
α+…+k
n
A
n
α=0,用A
n
左乘上式的两边,并把A
n+1
α=0,A
n+2
α=0…代入,得
kA
n
α=0.
由A
n
α≠0而知必有k=0.类似地用A
n-1
左乘可得k
1
=0.因此,α,A
1
α,A
2
α,…,A
n
α线性无关.
但另一方面,这是n+1个n维向量,它们必然线性相关,两者矛盾.故A
n+1
α=0时,必有A
n
α=0,即(Ⅱ)的解必是(Ⅰ)的解.因此命题(2)正确.
所以应选A。
转载请注明原文地址:https://kaotiyun.com/show/KDS4777K
0
考研数学一
相关试题推荐
设3阶行列式其中aij=1或-1,i=1,2,3;j=1,2,3.则|A|的最大值是()
设A,B均为n阶矩阵,A可逆,且A~B,则下列命题中①AB~BA;②A2~B2;③AT~BT;④A-1~B-1。正确的个数为()
设X,Y为两个随机变量,P(X≤1,Y≤1,P(X≤1)=P(Y≤1)=,则P{min(X,Y)≤1}=().
设A为n阶矩阵,AT是A的转置矩阵,对于线性方程组(1)Ax=0和(2)ATAx=0,必有()
已知y1(x)和y2(x)是方程y′+p(x)y=0的两个不同的特解,则方程的通解为()
函数f(x)=(x2-x-2)|x3-x|的不可导点有
设A=,则在实数域上与A合同的矩阵为
设随机变量X取非负整数值,P{X=n}=an(n≥1),且EX=1,则a的值为()
设A,B为三阶矩阵,且特征值均为一2,1,1,以下命题:(1)A~B;(2)A,B合同;(3)A,B等价;(4)|A|=|B|中正确的命题个数为().
设二次型2x12+x22+x32+2x1x2+ax2x3的秩为2,则a=_________.
随机试题
根据《水电水利工程模板施工规范》(DL/T51l0—2000),下列关于模板施工的说法正确的是().
关于极低出生体重儿的叙述正确的是
有关滤线栅的叙述,错误的是
手太阳小肠经的络穴是()
依据《增值税暂行条例》的规定,下列属于须开具增值税专用发票的情形是:()
下列有关房屋权属登记的表述中,正确的是()。
Honesty,mymumalwaysusedtotellme,isthebestpolicy.Ofcourse,thisdidn’tincludeherwhenshetoldmethatifIdidn’
下列哪些说法是正确的?()
2014年3月22日至4月1日,国家主席习近平对荷兰、法国、德国、比利时进行国事访问,并访问联合国教科文组织总部、欧盟总部。此访是习近平主席作为国家元首首次欧洲之行,习近平主席同四国和欧盟领导人多次、长时间深入交谈,同往访国各界广泛接触,叙友谊、话交流、谈
Itwasimpossibletoavoid(be)______affectedbyhiswords.
最新回复
(
0
)