首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A,B乘积可交换,ξ1,…,ξr1和η1,…,ηr2分别是方程组Ax=0与Bx=0的一个基础解系,且对于n阶矩阵C,D,满足r(CA+DB)=n.证明: r且ξ1,…,ξr1,η1,…,ηr2线性无关;
设n阶矩阵A,B乘积可交换,ξ1,…,ξr1和η1,…,ηr2分别是方程组Ax=0与Bx=0的一个基础解系,且对于n阶矩阵C,D,满足r(CA+DB)=n.证明: r且ξ1,…,ξr1,η1,…,ηr2线性无关;
admin
2021-07-27
62
问题
设n阶矩阵A,B乘积可交换,ξ
1
,…,ξ
r1
和η
1
,…,η
r2
分别是方程组Ax=0与Bx=0的一个基础解系,且对于n阶矩阵C,D,满足r(CA+DB)=n.证明:
r
且ξ
1
,…,ξ
r1
,η
1
,…,η
r2
线性无关;
选项
答案
因为n=r(CA+DB)=[*]Ax=0与Bx=0无非零公共解,又ξ
1
,…,ξ
r1
,和η
1
,…,η
r1
分别为Ax=0与Bx=0的基础解系,于是ξ
1
,…,ξ
r1
,η
1
,…,η
r1
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/KTy4777K
0
考研数学二
相关试题推荐
设A,B皆为n阶矩阵,则下列结论正确的是().
向量组α1,α2,…,αm线性相关的充分条件是【】
设f(x),g(x)在[a,b]上连续,且满足∫axf(t)dt≥∫axg(t)dt,x∈[a,b),∫abf(t)dt=∫abg(t)dt。证明∫abxf(x)dx≤∫abxg(x)dx。
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5-α4的秩为4.
求y〞-2y′-e2χ=0满足初始条件y(0)=1,y′(0)=1的特解.
微分方程y〞-4y=e2χ+χ的特解形式为().
若向量组α1,α2,α3线性无关,向量组α1,α2,α4线性相关,则
线性方程组则()
设y1(x)、y2(x)为二阶变系数齐次线性方程y"+p(x)y’+q(x)y=0的两个特解,则C1y1(x)+C2y2(x)(C1,C2为任意常数)是该方程通解的充分条件为
设,求a,b的值.
随机试题
一座塑料大棚中有6块大小相同的长方形菜池子,按照从左到右的次序依次排列为:1、2、3、4、5和6号。而且1号和6号不相邻。大棚中恰好需要种6种蔬菜:Q、L、H、X、S和Y。每块菜池子只能种植其中的一种。种植安排必须符合以下条件:Q在H左侧的某一块菜池中种
甲状腺功能亢进症的病理变化包括
神志不清,语言重复,时断时续,声音低弱,属于
乳癌最早出现的症状是乳房皮肤呈橘皮样改变。()
个人汽车贷款签约和发放中的主要操作风险不包括()。
乙公司是一家餐饮企业,主打菜品为北京传统风味。该公司在店面设计上采用老北京传统民宅的风格,服务人员全部招聘地道的北京人,口音纯正,配以老北京酒馆店小二服饰,营造出一种浓郁的老北京氛围。根据以上信息可以判断,该企业的战略是()。
甲公司于2019年10月10日通过拍卖方式拍得位于北京郊区的一块工业建设用地;同年10月15日,甲公司与北京市土地管理部门签订《建设用地使用权出让合同》;同年10月21日,甲公司缴纳全部土地出让金;同年11月5日,甲公司办理完毕建设用地使用权登记,并获得建
长江三角洲某中央企业向A省某钢铁公司注资人民币30亿元,控股69.61%,这是国内钢铁企业重组收购的一次重大举措,该并购事件体现了()。
Standardusageincludesthosewordsandexpressionsunderstood,used,andacceptedbyamajorityofthespeakersofalanguagei
Howabout______dinnerwithmetonight?
最新回复
(
0
)