首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=有三个线性无关的特征向量,求a及An.
设A=有三个线性无关的特征向量,求a及An.
admin
2018-05-21
23
问题
设A=
有三个线性无关的特征向量,求a及A
n
.
选项
答案
由|λE-A| [*] =0,得λ
1
=λ
2
=1,λ
3
=2. [*] 因为矩阵A有三个线性无关的特征向量,所以A一定可对角化,从而r(E-A)=1, 即a=1,故A [*] 由λ=1时,由(E-A)X=0,得ξ
1
[*] 由λ=2时,由(2E-A)X=0,得ξ
3
=[*] 令P=(ξ
1
,ξ
2
,ξ
3
) [*] 两边n次幂得 P
-1
A
n
P [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/KZr4777K
0
考研数学一
相关试题推荐
设A,B,C是三个随机事件,P(ABC)=0,且0<P(C)<1,则一定有()
设f(x1,x2,x3)=x2Ax=x12+ax22+x32+4x1x2+4x1x3+2bx2x3,ξ=(1,1,1)T是A的特征向量,求正交变换化二次型为标准形,并求当x满足x2x=x12+x22+x32=1时,f(x1,x2,x3)的最大值。
设A,B为三阶相似矩阵,且|2B+A|=0,λ1=1,λ2=一1为B的两个特征值,则行列式|A+2AB|=________。
设α1,α2,α3,α4,α5都是四维列向量,A=(α1,α2,α3,α4),非齐次线性方程组Ax=α5,有通解kξ+η=k(1,一1,2,0)T+(2,1,0,1)T,则下列关系式中不正确的是()
如图3—4所示,曲线C方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分∫03(x+x)f’’’(x)dx.
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得∫0af(x)dx=af(0)+f’(ξ).
设α1,α2,α3,α4,β为四维列向量组,A=(α1,α2,α3,α4),已知方程组Ax=β的通解是(一1,1,0,2)T+k(1,一1,2,0)T.(Ⅰ)β能否由α1,α2,α3线性表示?(Ⅱ)求α1,α2,α3,α4,β的一个极大线性无关组.
设A为3阶实对称矩阵,若存在正交矩阵Q,使得QTAQ=,又已知A的伴随矩阵A*有一个特征值为λ=1,相应的特征向量为α=(1,1,1)T.求正交矩阵Q
设3阶矩阵A与B相似,λ1=1,λ2=-2是矩阵A的两个特征值,且矩阵B的行列式|B|=1,则行列式|A*+E|=________.
随机试题
对建筑和制造公司中工作场所安全的研究发现,当工作负荷增加时,受伤率上升。因为在工作负荷增加时,无经验的工人经常被雇用,受伤率的增加无疑归因于无经验工人的高事故率。下面哪一项如果正确,最能削弱上面的结论?
急性弥漫性腹膜炎最常见的原因是
蜘蛛痣罕见于下列哪个部位
“商品名称规格型号”栏应填()。
M公司2015年度发生的有关交易或事项如下:(1)2015年1月1日M公司从其母公司处购入乙公司90%的股权,实际支付价款6000万元。合并日,乙公司净资产的账面价值为7000万元,公允价值为8000万元。M公司取得乙公司90%股权后,能够
B公司采用余额百分比法结合个别认定法核算坏账准备。2005年年末,应收账款账面余额(即扣除坏账准备前的余额)为2000万元。在年末对应收款项进行催收中发现,其中一家债务人Y公司因为经营不善,已经处于破产状态,估计500万元余额全部无法收回。2005年度,
营养素缺乏与体征判别和营养咨询与宣教9岁男孩豆豆,身高122cm,体重33kg,胸围60cm,喜欢肉类食品特别是炸鸡腿等,还喜欢巧克力和甜饮料,平时不爱运动,早上贪睡,经常来不及吃早饭就去学校,课间休息时买些面包、饼干或汉堡充饥。请根据
素质教育就是学生什么都学、什么都学好。()
根据下面材料回答下列小题。截至2011年末,T市城镇职工基本医疗保险参保人员474.52万人,城乡居民基本医疗保险参保人员498.30万人,城镇职工基本养老保险参保人员458.70万人,城乡居民基本养老保险参保人员97.80万人,失业保险参保职工
Nowadays,therehavebeenmanyargumentsagainsttheinterviewasaselectionprocedureforfuturepartner.Asaresult,Interne
最新回复
(
0
)