首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3. (1)证明:β,Aβ,A2β线性无关; (2)若A3β=Aβ,求秩r(A—E)及行列式|A+2E|.
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3. (1)证明:β,Aβ,A2β线性无关; (2)若A3β=Aβ,求秩r(A—E)及行列式|A+2E|.
admin
2015-08-14
107
问题
设A为3阶矩阵,λ
1
,λ
2
,λ
3
是A的三个不同特征值,对应的特征向量为α
1
,α
2
,α
3
,令β=α
1
+α
2
+α
3
.
(1)证明:β,Aβ,A
2
β线性无关;
(2)若A
3
β=Aβ,求秩r(A—E)及行列式|A+2E|.
选项
答案
(1)设 k
1
β+k
2
Aβ+k
3
A
2
β=o, ① 由题设Aα
i
=λ
i
α
i
(i=1,2,3),于是 Aβ=Aα
1
+Aα
2
+Aα
3
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
, A
2
β=λ
1
2
α
1
+λ
2
2
α
2
+λ
3
2
α
3
,代入①式整理得 (k
1
+k
2
λ
1
+k
3
λ
1
2
)α
1
+(k
1
+k
2
λ
2
+k
3
λ
2
2
) α
2
+(k
1
+k
2
λ
3
+k
3
λ
3
2
)α
3
=0. 因为α
1
,α
2
,α
3
是三个不同特征值对应的特征向量,必线性无关,于是有[*] 其系数行列式[*]≠0,必有k
1
=k
2
=k
3
=0,故β,Aβ,A
2
β线性无关. (2)由A
3
β=Aβ有 A[β,Aβ,A
2
β]=[Aβ,A
2
β,A
3
β]=[Aβ,A
2
β,Aβ]=[β,Aβ,A
2
β][*] 令P=[β,Aβ,A
2
β],则P可逆,且[*] 从而有 r(A—E)=r(B—E)=r[*]=2. |A+2E|=|B+2E|=[*]=6.
解析
转载请注明原文地址:https://kaotiyun.com/show/Kg34777K
0
考研数学二
相关试题推荐
设f(x)=1/πx+1/sinπx-1/π(1-x),x∈[1/2,1),试补充定义使得f(x)在[1/2,1]上连续.
设当x→0时,(x-sinx)ln(1+x)是比高阶的无穷小,而又是比1/x∫0x(1-cos2t)dt高阶的无穷小,则n为().
设A,B分别为m×n及n×s阶矩阵,且AB=O.证明:r(A)+r(B)≤n.
设平面区域D:1<x2+y2≤4,f(x,y)是区域D上的连续函数,则等于().
设积分I=∫1+∞(p>0,q>0)收敛,则()
设D={(x,y)∣x2+y2≤π),计算积分
设随机变量X的概率密度为,其中a,b为常数.记Φ(x)为N(0,1)的分布函数.若在x=1处f(x)取得最大值,则P{1-<X<1+}=()
用恒等变形法或提公因式法化简极限函数,再用等价无穷小代换求出结果.[*]
连续进行某项试验,每次试验只有成功和失败两个结果,设当第k次成功时,第k+1次试验成功的概率为,当第k次失败时,第k+1次试验成功的概率为,且第一次试验成功与失败的概率均为,令X表示首次获得成功时的试验次数,求EX。
(1998年)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y(从海平面算起)与下沉速度v之间的函数关系,设仪器在重力的作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为m,体积为B,海水比重为ρ,仪器所
随机试题
交通信号包括交通信号灯、交通标志、交通标线和交通警察的指挥。
实行何种所有制结构,是由
《冯谖客孟尝君》选自《________________》。
诊断代谢性酸中毒的主要依据为
脊柱裂时常合并的颅脑异常,下列描述不正确的是
一般来说,儿童身高增长最快的时期是()
水泥稳定粒料基层实测项目中不包含()。
单元组合式现浇钢筋混凝土水池工艺流程中,池壁分块浇筑的前一项施工项目是()
刘某担任省重点科技攻关项目负责人,工作任务尚未完成,不得提出解除聘用合同。()
•YouwillhearpartofaninterviewbetweenthecommercialdirectorofapapercompanycalledSCAandShubhaMadhukar,theinter
最新回复
(
0
)