首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2009年] 设函数y=f(x)在区间[-1,3]上的图形为 则函数的图形为( ).
[2009年] 设函数y=f(x)在区间[-1,3]上的图形为 则函数的图形为( ).
admin
2019-03-30
83
问题
[2009年] 设函数y=f(x)在区间[-1,3]上的图形为
则函数
的图形为( ).
选项
A、
B、
C、
D、
答案
D
解析
解一 为判别F(x)的图形,首先要明确在各个区间上F(x)的性质.
(1)当x∈[-1,0]时,f(x)=1,F’(x)=f(x)=1>0.故F(x)单调增加,且
由F(0)=0排除(C),由F(x)=x<0,x∈[-1,0),排除(A)、(C).
(2)当x∈[0,1]时,F’(x)=f(x)≤0,F(x)单调下降,且
故排除(C).
(3)当x∈(2,3]时,f(x)=0
即F(x)在x=2处连续.
事实上,f(x)是在[-1,3]上仅有两点x
1
=0,x
2
=2不连续的连续函数,由命题1.3.4.1(2)知,f(x)可积,再由命题1.3.4.2(1)知,F(x)必在[-1,3]上连续,据此排除(B).于是仅(D)入选.
解二 f(x)在区间[-1,3]上是分段连续且是有界函数,由命题1.3.4.1(2)知,f(x)在[-1,3]可积,再由命题1.3.4.2(1)知,
在[-1,3]上连续.因此
在x=2处连续,而选项(B)中的F(x)在x=2处不连续,排除(B).
由定积分性质
而(C)中F(0)=1≠0,排除(C).又当x∈[-1,0)时,而(A)中F(x)≥0,排除(A).仅(D)入选.
注:命题1.3.4.1 (1)若f(x)在[a,b]上连续,则f(x)在[a,b]上可积;
(2)若f(x)在[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积;
命题1.3.4.2 (1)若f(x)在[a,b]上可积,则对任意x∈[a,b],变上限积分函数在[a,b]上连续;
转载请注明原文地址:https://kaotiyun.com/show/L4P4777K
0
考研数学三
相关试题推荐
二次型f(x1,x2,x3)=(x1+x2)2+(2x1+3x2+x3)2一5(x2+x3)2的规范形为()
已知矩阵的特征值的和为3,特征值的乘积是一24,则b=________。
若级数un收敛(un>0),则下列结论正确的是().
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求.
设随机变量X与Y均服从正态分布N(μ,σ2),则P{max(X,Y)>μ}一P{min(X,Y)<μ}=________。
设对一切的x,有f(x+1)=2f(x),且当x∈[0,1]时f(x)=x(x2一1),讨论函数f(x)在x=0处的可导性.
(2016年)设A,B为两个随机事件,且0<P(A)<1,0<P(B)<1,如果P(A|B)=1,则()
设则下列选项中是A的特征向量的是()
设函数f(x)与g(x)在(a,b)上可导,考虑下列叙述:①若f(x)>g(x),则f’(x)>g’(x);②若f’(x)>g’(x),则f(x)>g(x),则()
设f(x)=(Ⅰ)证明f(x)是以π为周期的周期函数;(Ⅱ)求f(x)的值域。
随机试题
痛泻药方的方药组成是
《素问·水热穴论》所说:“其本在肾。其末在肺”是指肺与肾的
主水饮,肾虚水泛,气血受困的面色特点是()
某厂向某校去函表示:“本厂发展X型耳机,每副单价30元,若需订购,请给我厂来函”。该校回信说:“本校愿意订购你厂生产的耳机300副,每副单价30元,但务请在耳机上附加一个音量调节器。”该校的复函属于()。
1997年5月2日,卢某因协助外国人进入我国国境,被主管机关处以5日拘留。按照《行政处罚法》的规定,这项处罚应当由哪种规范性文件设定?
重力式码头胸墙混凝土,在施工缝处浇筑时应清除已硬化混凝土表面的()。
一般情况下,应以()的员工能够达到的工作水平作为绩效指标的考评标准。
在幼儿的交往关系类型中,被拒绝型幼儿主要表现出的特点是()
Ridingabikeisgoodexerciseandgreatfun.Butwhatdoyoudowithabikeafteryououtgrowit?NicoleBasil,12,hasaterri
Web服务(webservice)的主要目标是跨平台的操作性,它有许多适用场合。但某些情况下,Web服务也会降低应用程序的性能。下列情况中,______不适合采用Web服务作为主要的系统集成技术。
最新回复
(
0
)