首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g’(x)≠0.证明:存在ξ∈(a,b),使得
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g’(x)≠0.证明:存在ξ∈(a,b),使得
admin
2019-08-06
62
问题
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g’(x)≠0.证明:存在ξ∈(a,b),使得
选项
答案
令F(x)=f(x)g(b)+f(a)g(x)一f(x)g(x),则F(x)在[a,b]上连续,在(a,b)内可导,且F(a)=F(b)=f(a)g(b),由罗尔定理,存在ξ∈(a,b),使得F’(ξ)=0,而F’(x)=f’(x)g(b)+f(a)g’(x)一f’(x)g(x)一f(x)g’(x),所以 [*]
解析
这是含端点和含ξ的项的问题,且端点与含ξ的项不可分离,具体构造辅助函数如下.把结论中的ξ换成x得
,整理得
f’(x)g(b)+f(a)g’(x)一f’(x)g(x)一f(x)g’(x)=0,
还原得
[f(x)g(b)+f(a)g(x)一f(x)g(x)]’=0,
辅助函数为
F(x)=f(x)g(b)+f(a)g(x)一f(x)g(x).
转载请注明原文地址:https://kaotiyun.com/show/L5J4777K
0
考研数学三
相关试题推荐
设f’(x)在[0,1]上连续且|f’(x)|≤M.证明:
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:存在c∈(a,b),使得f(c)=0;
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且证明:f’(x0)=M.
对二元函数z=f(x,y),下列结论正确的是().
设随机变量X~U(0,1),在X=x(0<x<1)下,Y~U(0,x).求Y的边缘密度函数.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn.Aαn=0.证明:α1,α2,…,αn线性无关;
证明:满足微分方程y(4)-y=0并求和函数S(x).
设二维随机变量(X,Y)的联合密度函数为试求:数学期望EX,EY;
试求多项式p(x)=x2+ax+b,使积分∫-11p2(x)dx取最小值.
随机试题
“永州八记”写于柳宗元被贬为________时,其首篇是《________》。
以下观点何项是《诸病源候论》提出的
男性,30岁。患出血坏死性胰腺炎2周,经治疗,高热不退,持续腹痛。体检:上腹扪及一块物。血淀粉酶1000U/L(Somogyi法),血白细胞14×109/L,中性粒细胞0.85(85%)。最可能的原因是
病理切片中见到绒毛结构的疾病不是流产后不规则流血,子宫内容物组织学检查为成团的滋养细胞,未见绒毛结构,诊断为
目前,各银行还根据个人需求提供个性化的还款方式及还款服务,较为常见的特色还款方式包括()。
日用小杂品的配送在现实生活中,往往都是采用()方法来向用户供货和发送货物的。
Sociologists(社会学家)tellusthatweareheadingforasocietyleisure.Thetrendisunmistakable.Onehundredyearsago,theypo
A、 B、 C、 D、 C确认图片中有孩子们和一位女士在公交车旁排成一队,同时公交车里面的男士正在看着他们。
A、Newspaperoflowprice.B、Newspaperwithattractiveheadline.C、Newspaperwithsportspage.D、Newspaperwithbusinesssection.
A、Theinterpersonalrelationship.B、Thehighpressure.C、Theservantsystem.D、Therapidprogress.B原文提到美国人对时间又爱又十艮,后面具体解释原因,答案依
最新回复
(
0
)