首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g’(x)≠0.证明:存在ξ∈(a,b),使得
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g’(x)≠0.证明:存在ξ∈(a,b),使得
admin
2019-08-06
58
问题
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g’(x)≠0.证明:存在ξ∈(a,b),使得
选项
答案
令F(x)=f(x)g(b)+f(a)g(x)一f(x)g(x),则F(x)在[a,b]上连续,在(a,b)内可导,且F(a)=F(b)=f(a)g(b),由罗尔定理,存在ξ∈(a,b),使得F’(ξ)=0,而F’(x)=f’(x)g(b)+f(a)g’(x)一f’(x)g(x)一f(x)g’(x),所以 [*]
解析
这是含端点和含ξ的项的问题,且端点与含ξ的项不可分离,具体构造辅助函数如下.把结论中的ξ换成x得
,整理得
f’(x)g(b)+f(a)g’(x)一f’(x)g(x)一f(x)g’(x)=0,
还原得
[f(x)g(b)+f(a)g(x)一f(x)g(x)]’=0,
辅助函数为
F(x)=f(x)g(b)+f(a)g(x)一f(x)g(x).
转载请注明原文地址:https://kaotiyun.com/show/L5J4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:存在η∈(a,b),使得f’’(η)-3f’(η)+zf(η)=0.
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为X,Z是否相互独立?为什么?
设A=E-ααT,其中α为n维非零列向量.证明:当α是单位向量时A为不可逆矩阵.
设A=E-ααT,其中α为n维非零列向量.证明:A2=A的充分必要条件是α为单位向量;
设二维非零向量α不是二阶方阵A的特征向量.证明:α,Aα线性无关;
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
设连续非负函数f(x)满足f(x)f(-x)=1,则=______.
设k>0,则函数的零点个数为().
设二维随机变量(X,Y)的联合密度函数为试求:方差DX,DY;
随机试题
Byadoptingafewsimpletechniques,parentswhoreadtotheirchildrencangreatlyincreasetheirchildren’slanguagedevelopm
作为治疗和紧急预防的制品是
A.真菌B.亲脂病毒C.亲水病毒D.细菌繁殖体E.细菌芽孢对消毒因子的敏感性最高的是
急性多发性龋脓肿最佳治疗方案为
下列根管预备的注意事项中,错误的是
A.可逆性B.饱和性C.特异性D.灵敏性E.多样性受体对配体具有高度识别能力,对配体的化学结构与立体结构具有专一性,这一属性属于受体的
在Excel中,进行自动分类汇总之前,必须对数据清单进行()。
中华人民共和国缔结或者参加的有关动植物检疫的国际条约与《进出境动植物检疫法》有不同规定的,一律适用该国际条约的规定。( )
对考生文件夹下Word.docx文档中的文字进行编辑、排版和保存,具体要求如下。【文档开始】
A、Goabroadforstudyatonce.B、Celebrateforhergrantedvisa.C、Getherhealthcertificate.D、Applyforanothervisa.C
最新回复
(
0
)