首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上有连续导数,且f(0)=0.试证明:至少存在一点η∈[0,1],使f’(η)=2∫01f(x)dx.
设f(x)在[0,1]上有连续导数,且f(0)=0.试证明:至少存在一点η∈[0,1],使f’(η)=2∫01f(x)dx.
admin
2016-12-16
37
问题
设f(x)在[0,1]上有连续导数,且f(0)=0.试证明:至少存在一点η∈[0,1],使f’(η)=2∫
0
1
f(x)dx.
选项
答案
因为f’(x)在[0,1]上连续,所以函数f’(x)在[0,1]上有最值, 设其最大值与最小值分别为M和m,即有 m≤f’(x)≤M,x∈[0,1]. 又由拉格朗日中值定理有 f(x)=f(x)一f(0)=xf’(ξ), 则 2∫
0
1
f(x)dx=2∫
0
1
xf’(ξ)dx, ① 因m≤f’(ξ)≤M,故 a≤xf’(ξ)≤xM(因z>0), 所以 2mx≤2xf’(ξ)≤2xM, 因而 2m∫
0
1
xdx≤2∫
0
1
xf’(ξ)dx≤2M∫
0
1
xdx, 即 m≤2∫
0
1
xf’(ξ)dx≤M, 由式①得到 m≤2∫
0
1
f(x)dx≤M. 对f’(x)使用介值定理,得到至少存在一点η∈[0,1],使 f’(η)=2∫
0
1
f(x) dx.
解析
因f’(x)在[0,1]上连续,如能证明2∫
0
1
f(x)如在函数f’(x)的最大值与最小值之间,对f’(x)在[0,1]上使用介值定理,问题得证.为要产生导数f’(η),注意到f(0)=0,可先使用拉格朗日中值定理.
转载请注明原文地址:https://kaotiyun.com/show/L6H4777K
0
考研数学三
相关试题推荐
求下列微分方程的通解:(1)y〞-2yˊ=0;(2)y〞-3yˊ+2y=0;(3)y〞+4y=0;(4)y〞-4yˊ+5y=0;(5)y〞-6yˊ+9y=0;(6)y〞+2yˊ+ay=0;(7)y〞+6y〞+10yˊ=0;
已知函数z=f(x,y)的全微分dz=2ydy,并且f(1,1)=求f(x,y)在椭圆域D={(x,y)|x2+y/4≤1}上的最大值和最小值.
将函数f(x)=2+|x|,(-1≤x≤1)展开成以2为周期的傅里叶级数,并由此求级数的和.
二次型f(x1,x2,x3)=x12+4x22+3x32-4x1x2+2x1x3+8x2x3的秩等于()。
设f(x)在区间[-a,a](a>0)上有二阶连续导数,f(0)=0证明在[-a,a]上至少存在一点η,使a3f"(η)=[*]
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x≤20;
设z=z(x,y)是由方程x2+y2-z=φ(x+Y+z)所确定的函数,其中φ具有二阶导数,且φ’≠-1.(I)记
设生产某种产品必须投入两种要素,x1和x2分别为两要素的投入量,Q为产出量,若生产函数为Q=2x1αx2β,其中α,β为正常数,且α+β=1.假设两种要素的价格分别为ρ1和ρ2,试问:当产出量为12时,两要素各投入多少可以使得投入总费用最小?
设X1,X2为来自正态总体N(μ,σ2)的样本,则X1+X2与X1-X2必().
方程yy’’=1+y’2满足初始条件y(0)=1,y’(0)=0的通解为__________.
随机试题
同种荧光质增感屏,清晰度最好的是
设随机变量x的密度函数为φ(X),且φ(-X)=φ(X),f(X)是X的分布函数,则对任意实数a,有()。
若土料的含水量偏高,可以采取的措施有()。
企业应当在利润表中列示每股收益信息。()
下列选项中属于要约的特点的有()。
影响某股票贝塔系数大小的因素有()。(2017年卷Ⅱ)
承运人制定运输费率时,必须对距离、______等因素进行综合考虑。
进入老年阶段后将要面临许多的问题,主要有()。
为中国人民谋幸福,为中华民族谋复兴,是中国共产党人的初心和使命。
Withthedevelopmentoftheglobaleconomy,manycompaniesengageinaworldwidemanufacturingbusinessandclaimtheyareamul
最新回复
(
0
)